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We report analytical and numerical studies of surface correlations in finite, 
homogeneously polarizable, classical Coulomb systems placed in an insulating 
or conducting environment. Their purpose is to understand the phenomeno- 
logical, shape-dependent laws of electrostatics, from the point of view of statis- 
tical mechanics; we focus on the knowledge of the dielectric susceptibility of the 
system, a quantity proportional to the equilibrium fluctuation of the system's 
instantaneous polarization per unit volume. This goal has been achieved for a 
system in a conducting state. The picture is that the shape-dependent part of the 
susceptibilities results from the action of unbounded observables (the second 
moments of the instantaneous polarization of the system) on long-range surface 
correlations and that the relations of electrostatics are verified by means of 
shape-dependent thermodynamic limits. This picture is supported (i) by exact 
solutions and asymptotic analysis of the Debye-Hfickel approximation of multi- 
component plasmas in disks and spheres with insulating and conducting 
environment and also in ellipses in a vacuum, and (ii) by computer simulations 
of a one-component plasma in a disk with different environments, notably a 
conducting environment with permeable and impermeable wall. These observa- 
tions have revealed for the first time the reason why the susceptibility of a 
conducting disk in a conductor with impermeable walls diverges linearly with 
the radius of the disk: this is due to the occurrence of long-range radial correla- 
tions in the conductor. These findings are quantitatively interpreted in terms of 
a novel "~canonicaF' Debye-Hiickel approximation as contrasted to the ordinary 
"grand canonical" version. Lastly a fi'esh look at the problem of the surface 
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correlations of a conductor in a vacuum, which places the observer close to the 
surface of the conductor but in the vacuum, is presented and applied to the disk, 
the ellipse, the cylinder, the sphere, and the wedge. 

KEY WORDS: Phenomenological electrostatics; shape-dependent effects; 
dielectric susceptibility; surface correlations; Debye-H/ickel approximation; 
grand ensemble computer simulation. 

1 ." I N T R O D U C T I O N  

This paper is a contribution to the theory of the size and shape dependence 
of the dielectric susceptibility of finite, homogeneously polarizable, classical 
Coulomb systems surrounded by a medium of arbitrary dielectric constant. 
Contact with the laws of electrostatics is achieved through a systematic 
study of surface correlations in model systems. 

The original motivation of this work was the lack of understanding, 
from the point of view of statistical mechanics, of the phenomenological 
laws of electrostatics which govern the relations connecting the dielectric 
constant e of a macroscopic piece of a homogeneously polarizable system, 
its susceptibility tensor, the depolarization tensor associated with its shape, 
and the dielectric constant of the surrounding medium. 

This gap has now been filled when the system is in a conducting state. 
The overall picture is (1) that the shape-dependent part of the suscep- 
tibilities results from the action of unbounded observables (the second 
moments of the instantaneous polarization of the system) on long-range 
surface correlations, both angular and radial, and (2) that the relations of 
electrostatics are verified by means of shape-dependent thermodynamic 
limits, a crucial and novel prescription in the field. 

In a certain sense, the results presented here and in two previous 
papers (refs. 1 and 2, henceforth referred to as I and II, respectively) 
constitute a missing piece in the series of work dealing with the screening 
properties of infinite and semi-infinite Coulomb systems as recently 
reviewed by Martin. C3~ More work needs to be done if the system is in a 
dielectric state, if it can undergo phase transitions such as dielectric-plasma 
or para-ferroelectric ones, and, of course, if it is not classical. More work 
needs also to be done on the theory of image forces. 

The first exact results on the size and shape dependence of the dielec- 
tric susceptibility of a classical conductor appeared in ref. 1. Direct calcula- 
tion of the susceptibility of a two-dimensional one-component plasma 
(OCP) in a disk for the particular value of the coupling constant 
q2/k B T =  2, for which the model is exactly solvable, produced the value 
7z- l[ l_(rcN/2)- l /2+2N-l+O(N 3/2)], which is 7t -~ in the thermo- 



Finite Classical Coulomb Systems 1187 

dynamic limit as required by the Clausius-Mossotti relation, but which is 
twice as large as the value given by the second-moment Stillinger-Lovett 
sum rule. Why r r - l =  (27z) 1+ (2)z)-~ is a question addressed to in the 
second paper. (2~ There it was shown that, for the same solvable model 
again, the susceptibility consisted of a bulk part = (2~)-1 and of a surface 
part. To study the latter, the concept of partial second moment was 
introduced and it was shown that the surface contribution followed a very 
long-range law in ~ "- arcsin(r/2R), originally suggested by computer 
simulations, and which saturates to (27z) -~ at the disk diameter. The origin 
of this law was that, for two particles close to the edge of the disk, the 
pair correlation function decayed with the inverse square of their distance, 
a typical dipole-dipole interaction due to the asymmetric screening of 
the charges when they are close to the edge of the domain. Computer 
simulations of a two-component Coulomb system in a disk and at high 
temperature confirmed the generality of the "arc sine" law followed by the 
partial susceptibility of this system. 

So far we have been dealing with systems surrounded by the vacuum, 
i.e., e '=  I. 

At this stage, a series of questions emerged naturally, namely: What 
about the Clausius-Mossotti relation, which says that the susceptibility of 
a disk-shaped conductor surrounded by an insulator of dielectric constant 
e' is, in the thermodynamic limit, given by 7r/2 + e'Tr/27 What about the size 
dependence of this law? What about the origin of its divergence if the 
surrounding medium is a conductor, i.e., e '=  oc ? What about other shapes, 
such as elliptic ones? What about three-dimensional systems? These are the 
questions addressed in this paper. 

The problem of providing answers to these questions is that there is no 
solvable model of finite Coulomb systems of given size and shape and sub- 
jected to image forces resulting from the presence of a surrounding medium 
with arbitrary dielectric constant. For that reason, we have (1) had 
recourse to the linear Debye-H/ickel approximation, which had already, 
and successfully, been applied to the investigation of surface correlations of 
semi-infinite systems (ref. 4, p. 55) for e '=  1, and (2) conducted a series of 
computer experiments with the OCP on a disk in different environments to 
guide us and to enable confrontation with the results of the Debye-Hfickel 
theory. 

The paper is constructed as follows. 
In Section 2, we review the laws of electrostatics which relate the 

dielectric constant e of a homogeneously polarizable system to its polariza- 
tion fluctuation (PF) susceptibility, its depolarization tensor, and the 
dielectric constant e' of the surrounding medium. We observe in particular 
that it is only with Neumann boundary conditions (e' =0)  that the PF 
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susceptibility tensor of a finite conductor converges toward the isotropic 
Stillinger-Lovett (SL) value and this for all admissible shapes. In this 
section, we introduce also a distinction between z(PF) and the second 
moment susceptibility z(SM), which coincide only when the perfect 
screening sum rule is satisfied. If not, as illustrated by three examples at the 
end of this section, one has to introduce an excess susceptibility AZ 
produced by charge fluctuations. 

In Section 3, we present the Debye-Hiickel (DH) approximation for 
finite systems in an e' environment and we discuss its application to the 
disk and to the sphere. We find that the DH approximation is capable of 
reproducing in the thermodynamic limit the predictions of electrostatics 
summarized in Section2. Through the splitting of z (P(F)=z(SM)+Az,  
we learn about the size dependence of these contributions and which one 
of them diverges in the case of a metallic environment. We show that, 
owing to imperfect screening or to charge fluctuations as known in grand 
canonical ensemble theories, AZ diverges linearly with the radius of the 
system, whereas z(SM) saturates toward the SL value. This value is not 
relevant here since the susceptibility must diverge in the thermodynamic 
limit. The same result has been obtained for a disk-shaped subdomain of 
a finite or infinite OCP at the particular coupling constant e2fl = 2: z(PF) 
is dominated by a diverging dZ due to charge fluctuations and x(SM)= 
1/2g. Why does x(SM) diverge in a canonical ensemble theory in which the 
perfect screening sum rule is satisfied? This is, according to Martin's recent 
review (ref. 3, Section IIIG.1), an open question. It is dealt with in 
Section 6. 

In Section 4, we analyze the surface correlation functions of the DH 
approximation for a disk and for a sphere. We find that, as the first term 
of an asymptotic expansion, the surface correlations decay with the inverse 
square of the chord of the disk. For the sphere, we find a surface correlation 
decaying with the inverse cube of the chord plus an angular-independent 
contribution proportional to the inverse cube of the radius R. In three 
dimensions, this result does not fit with a rigorous upper bound established 
by Federbush and Kennedy (ref. 5, pp. 368 369), which is that the surface 
correlation function decays with the inverse cube of the arc. We comment 
on this at the end of Section 5.2. 

Section 5 is devoted to the detailed algebraic calculations of the SM, 
excess, and PF susceptibility of the disk and of the sphere on the basis of 
the expansion given in Section 3, in which the results are summarized. It is 
also mentioned that the susceptibilities calculated from the surface correla- 
tion functions give exactly the same results as those obtained directly 
from expectation value of the first three terms of the expansions. We find 
in particular that the three-dimensional analog of the long-range 
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~--2 arcsin(r/2R) law for the partial susceptibility of a disk is given by 
(4~z) l[(r/2R) + (r/2R)4], which produces again the exact surface contribu- 
tion 1/2~r at r = 2R. 

In Section 6, we take up the difficult and so far unsolved problem of 
the divergence of the SM susceptibility for a conductor in a conductor with 
impermeable walls, i.e., Dirichlet boundary conditions for the bare 
Coulomb interaction but preservation of the charge neutrality sum rule. 
The key finding, suggested by the computer experiments reported in Sec- 
tion 7, is that on the edge of the disk the canonical truncated pair correla- 
tion function possesses an angular-independent component proportional to 
the inverse radius of the disk, and that the latter decays exponentially 
toward the interior. In the Appendix B, we show that the truncated radial 
pair distribution function possesses a depression of amplitude R 1 close to 
the diameter of the disk and that the second moment of this function is 
proportional to the disk radius. In this Appendix, we propose a three- 
dimensional version of this feature, which is an R 2 amplitude of the 
corresponding function. At the end of Section 6, we discuss also the cross- 
over of the surface susceptibility from an e' to an R behavior, which occurs 
at e'/KR ~ 1 (/~--1 being the Debye length), as suspected. 

l[n Section 7, we present some results obtained by Monte Carlo 
simuIations of an OCP on a disk. We consider the case where the system 
is surrounded by vacuum, by a dielectric environment, and by a conductor. 
Besides the usual canonical ensemble simulations, we perform some runs in 
a grand ensemble, where not only are fluctuations of neutral pairs allowed, 
as in the traditional grand ensemble simulations of Coulomb systems, but 
so are charge fluctuations. The usually arbitrary scale length L which 
occurs in the logarithmic potential affects, in the grand ensemble simula- 
tion, the physical properties of the system, except if e ' =  oo. This is shown 
to be so, since the metallic boundary conditions are the only boundary 
conditions compatible with the hypothesis of the grand ensemble. The 
polarization fluctuations of the OCP are very similar in both ensembles, 
and their size dependence is in good agreement with the DH theory at a 
coupling constant F as high as 0.5. However, the correlation functions are 
different in the two ensembles for a metallic environment represented by 
Dirichlet boundary conditions. Whereas they vanish at large distance in the 
grand ensemble, they manifest a depression at a distance close to the 
diameter of the disk in the canonical ensemble. The entire profile of the 
radial pair distribution function is remarkably well reproduced by the 
canonical DH approximation developed in Appendix B. 

Anisotropic shapes are studied in Sections 8 and 9. In Section 8, the 
particular case of an elliptic geometry is considered. The solution of the 
DH equation exhibits again a slow decay of the correlation functions along 
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the wall. The new result is that the strength of the correlations in regions 
of high curvature is increased. This feature is reminiscent of the "needle 
effect" known in electrostatics and provides an intuitive explanation to the 
problem of the shape-dependent susceptibilities in terms of correlation 
functions. 

A fresh look at the problem of the surface correlations of a conductor 
in a vacuum is proposed in Section 9. The idea is to approach the problem 
of the surface correlation of a conductor in the vacuum from outside, i.e., 
from a point source located at a point close to the boundary of the system 
but exterior to it. An intuitive description of the situation is presented, and 
proved in Appendix D for the disk, that, for sufficiently smooth shapes (i.e., 
of curvature larger than the Debye length), the surface correlation of the 
conductor is given by the bigradient of the exterior Coulomb kernel satis- 
fying Dirichlet boundary conditions. This proposal is applied to the disk, 
to the ellipse, to the sphere, and to the cylinder, and reproduces exactly the 
results known for these smooth shapes. Then it is applied to the problem of 
a three-dimensional wedge which possesses a singular shape and here, for an 
opening angle 21r - 0, it predicts an algebraic decay ,-~ ]z - z' I -~1 + 2~/0~. This 
result does not fit with a conjecture, based on the Carnie and Chan sum 
rule and published in ref. 6, which says that the decay should behaves as 
1 / [ i z - z ' l  log~(~c I z -  z'l )]. We comment on this at the end of Section 9.5. 

Appendix A deals with the question of the semi-infinite plane limit of 
the DH kernel for the disk. The contents of Appendices B, C, and D are 
reported in the summary of Sections 7-9. 

2. DIELECTRIC C O N S T A N T S  A N D  SUSCEPTIBIL IT IES 

In this section, we generalize the relations (2.1)-(2.11) of II to the case 
where the systems considered are surrounded by a medium of dielectric 
constant e', we analyze some important consequences of these generaliza- 
tions for the plasma state in particular, and we generalize the relations 
(2.24)-(2.27) of II to the cases where the perfect screening sum rule is not 
satisfied. This can happen in finite systems. 

The presence of a dielectricum surrounding the systems confined in 
their domain A modifies their Hamiltonians in two ways: (i) through the 
kernel of the interaction potential, which conveys the effects of the image 
charges, but which we do not discuss further here (cf. Section 7), and (ii) 
through the coupling of their instantaneous polarization ~ with the exter- 
nal field Eo, which occurs via the field E a acting in A. This field is linearly 
related to the applied field with coefficients which depend upon e' and upon 
the size-invariant but shape-dependent depolarization tensor T~ defined by 
Eq. (2.7') of II. Considering for simplicity but without loss of generality a 
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coordinate system in which T A is diagonal and consequently the suscepti- 
bility tensor as well, Eq. (2.1) of II becomes, for each component of the 
corresponding vectors, 

~ =)~)Ea (2.!) 

with 

e'Eo 
E~ - (2.2) 

e ' + ( 1 - s ' ) T  A 

according to the laws of electrostatics (ref. 7, pp. 59-86; ref. 8, pp. 237-248). 
Another modification affects the depolarization field E~. Whereas 
Eqs. (2.2)-(2.5) of II are left unchanged by e', Eq. (2.6) becomes for each 
component again ~7~ 

( e - e ' )  s , .T~Y'  
E~ = - (2.3) 

e'(~ - 1 ) 

Together with Eqs. (2.3)-(2.5) of II, the present Eqs. (2.1)-(2.3) con- 
stitute a set of six linear homogeneous equations for each component of the 
fields Eo, Ec,, El,  E, and D and of the mean polarization ~ .  Nontrivial 
solutions of these sets imply the vanishing of the associated determinants. 
This yields the compatibility relations: 

~' + (1 - ~')  TA + ~ 's , (1  - -  TA) Z;', 
e = (2.4) 

~'+ (1  - ~ ' ) T ~  - s,, r ~ z ~ ;  

The synthetic form of Eq. (2.4) is apparently new. Clearly, Eq. (2.11) 
of II is recovered for e '=  1. Strictly speaking, macroscopic electrostatics 
demands that on the rhs of Eq. (2.4), the thermodynamic limit of " ~' ZA be 
taken. We shall nevertheless use the above equation as a definition of 
s(IA[) in order to examine its size dependence, notably for conductors. 

We proceed with a detailed analysis of interesting special cases of 
Eq. (2.4) in taking care of undetermined limiting ratios on its rhs. To do so, 
we distinguish (i) ~ ' = , 2  and 0 from 0 < e ' <  oo and (ii) regular from 
singular shapes of A. We define the latter as follows: A regular (singular) 
shape is such that all (one at least of) the components of T~ E ]0, 1[ ( = 0  
or = 1), their sum being of course equal to 1. In this sense ellipses and 
ellipsoids have regular shapes, since 0 < T,i< 1 ( i=  1 ..... v), while strips, 
slabs, and cylinders have singular shapes, since their depolarization tensors 
are given by (1, 0), (1, 0, 0), and (1/2, 1/2, 0) respectively. 

(A) e '=  ~ .  In this case, the interaction kernel satisfies Dirichlet 
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boundary conditions, the surrounding medium is a conductor, and 
Eq. (2.4) becomes 

(1 T~)(1 s - + v Z . t  ) 
e =  - 1 +SvXA; TA r 1 (2.5) 

1 - -  TA 

(B) e ' = 0 .  Here the interaction kernel satisfies Neumann conditions 
on 0A, which, although unphysical, will nevertheless prove very important  
in what follows, and Eq. (2.4) becomes 

rA 1 
- �9 T ~ r  ( 2 . 6 )  

g=(1--&Z~ 1--&X ~ , 

(C) TA=O. The corresponding component  of the susceptibility 
r and Eq. (2.4) becomes in this case tensor is its transverse component  Xu 

e = e'(1 + sv)~;)/e' = 1 + s,,z~;; e ' > 0  (2.7) 

(D) TA= 1. The corresponding component  of ~a is its normal 
component  )~• and we get 

e = 1/(1 - s , . ) ~ ) ;  e ' < o o  (2.8) 

We are left with the singular cases ira = 1, a' = O0 and T A = 0, a' = 0 so far 
undetermined. For the operational reason that the dielectric constant of the 
medium surrounding a system has to be chosen before the thermodynamic 
limit of the system is taken, we propose to extend Eq. (2.5) to the limit 
T A - +  1 and Eq. (2.6) to the limit T A --, 0. 

(E) e =  oo. The system considered is a conductor. Of particular 
interest are the critical values reached by the components of ZA in this 
state. Setting the denominator  of Eq. (2.4) equal to zero results in 

�9 & e '  1 g ' ( l  - -  TA) 
ZA =---t-  (2.9) 

Sv Sv TA 

This relation is valid without further precautions for regular shapes and 
0~<e'~<oo and for singular shapes and 0 < g ' <  oo. According to the 
sequence of limits proposed above, we have also 

th lim )C'] :~ = oo (2.10) 

and 

th lim Z~ ;~ 1/s~ (2.11) 

for all shapes. 
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For the singular shapes 
particular 

and 

(TA= t and 0, respectively) we have in 

Z•176 1/s~.', e '<ov  (2.12a) 

o P ' (2.12b) ~• = w; e = .vo 

Z~l = oc; e ' > 0  (2 .13a)  

Z~= 1/&.: e' = 0  (2.13b) 

Equation (2.11) is particularly interesting. Indeed, its rhs is 
immediately identified as the Stillinger-Lovett value of the bulk suscep- 
tibility of an infinite conductor. The lhs of Eq. (2.11 ) tells us that it is with 
and only with Neumann boundary conditions that the susceptibility of a 
finite conductor converges to the SL value and this for all shapes 
compatible with the requirement that the system be homogeneously 
polarizable. In fact, these boundary conditions minimize the surface effects 
and, although unphysical, may be of practical interest, notably in computer 
experiments. 

Let us consider next the susceptibilities. In II we considered only the 
case where the SM and PF susceptibilities are identical. This occurs when- 
ever the excess charge density y.~ S(x, y) dy = 0. This is called the perfect 
screening or monopole sum rule. It is always satisfied if the system is treated 
in a canonical ensemble theory. For reasons to become clear later, we wish 
to relax this condition. Then, the excess charge density will induce an 
excess susceptibility. 

Using again the identity 

( y , -  x,) + 
xi Yi - 2 + 

and generalizing in an obvious way the notation of I and II, we have 

- Z,:A( S M ) +  X~:;:A (2.14) 

with 

P c ;~I:A(PF) =~1JA x'yiSAdVx dVy (2.15) 

Z~J;A(SM)= 2[A[ ( y i - x , ) - S h ( x ,  y) dVxdVy (2.16) 
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and 

~X.;A~ ~' --2lAlfl fA (x~ + y~) SS,(x , y) d~x d~y (2.17) 

where we recall that 

S~(x, y )=~ q;p~:A:~,(X) 6(X-- y) + ~ q~q~p~r y) (2.18) 

is the charge vharge correlation function. 
In the following sections we shall meet the violation of the monopole 

sum rule on three occasions: (i) when the grand canonical ensemble is used 
with e ' =  ~o, (ii) when the polarization fluctuations are investigated in a 
permeable subdomain of a finite or infinite system, and (iii) when the 
correlation functions of finite systems are described in the framework of 
approximate schemes like the Debye-Hiickel (DH) mean field theory, with 
the exception of a few particular boundary conditions. 

3. DEBYE-HUCKEL A P P R O X I M A T I O N  A N D  S U M  RULES 

In the absence of exactly solvable models of multicomponents classical 
Coulomb systems with image charges we have recourse to the linearized 
DH approximation, which has already been successfully applied to the 
study of the long-range transverse pair correlation function near the surface 
of semi-infinite conductors filling a half-space ~4) or a cylinder. 191 However, 
whereas infinite or semi-infinite systems are necessarily neutral, finite 
systems can bear finite charges which spread over their walls. This feature 
introduces a new parameter into the theory and it is an interesting property 
of the DH approximation that it can mimic this situation. 

This approximation is defined as follows: Let p~ and q~ be the number 
density and the particle charge of the species e. A unique mean Debye wave 
number • occurs, defined through ~c2=~s~Z~qZp~. We define also 
P=Z~P~ and F=~gY~q2p~p -1 in such a way that ~c:=svFp. In the DH 
approximation the one-particle densities ~' pc=;A(X) a r e  to be taken constant 
and equal to p~ for x e  A and zero otherwise. The truncated two-particle 
correlation functions are approximated by their high-temperature and 
asymptotic form: 

T p~;ns(x, y)= --flq~q~p~pBG~(x, y) (3.1) 

where G~(x, y) is the DH kernel discussed below and fl = (KB T) 1. 
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In this approximation the charge charge correlation function S~:4(x, y) 
becomes 

F n  
S~(x, y)___2_~_ [ 6 ( x - y ) -  FpG;i(x, y) ]  (3.2) 

and the DH kernel satisfies the self-consistent equation 

, , Svfl - ~  ~G~(x, y) = ~Atx~ ~ S~(x, ),) (3.3) 

where SA is the characteristic function of the domain A and y is a point 
source in A. For x e A  we shall speak of ~' GA:i~(x, y) and for x r A, where 
the rhs of Eq. (3.3) vanishes, we shall speak of G~i:o~t(x, y). We note here 
that whereas the effective interactions as well as the correlation functions 
are usually defined for x and yEA,  the DH kernel, like the Coulomb 
kernel, can be defined for both x and yq!A, a situation considered in 
Section 9. The boundary conditions satisfied by the inner and outer kernels 
are discussed below. It is convenient to introduce here the dimensionless 
charge density: 

p;;(y) = ~p d~x S~(x, y) (3.4) 

In terms of the above functions, the PF, SM, and excess susceptibilities 
read as follows: 

and 

X~j;A(PF)= i-- ~ ., X,)',[6(X-- y)--FpG;'~(x, y)]  d~xd~y (3.5) 

F2P2 f A Z~I:A(SM)= 2 ~  (x~-- y~)2 G~(x, y) d~x d)' (3.6/ 

= -  Y~ P A(Y) drY (3.7) A)('#;A IAf .1 

In the next section the DH kernel is constructed explicitely for circular 
and spherical domains of radius R by means of expansions in terms of 
Bessel functions of the second kind for ~' GA;in(X, )') and harmonic functions 
for ~' J Gm,out(X, y )  with coefficients satisfying the following boundary condi- 
tions: continuity of the inner and outer parts ~" of GA.,n(x, y) and ~' �9 GA;out(X, Y)  
and continuity of the normal derivative of G~i:m(x, y) and ~' times the 
normal derivative of ~' GA:o~(x, y), for x or y on OA. The coefficients of the 
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angular-independent part of these expansions depend upon a parameter 
L/R through the amplitude of the surface Coulomb potential ln(L/R) - ~D 
for the disk and through (L - R)/R - ~s for the sphere. As to the boundary 
conditions, they can be understood if we write ~' G/t:in(X, y) in integral form. 
In the DH approximation, the effective interaction between two particles 
q~qpGA:i~(x , y) is determined by the Ornstein-Zernicke equation, in which 
the direct correlation function is approximated by - /?  times the bare 
Coulomb interaction q~q~C~(x, y), where C~(x, y) is the Coulomb kernel, 
which satisfies the standard boundary conditions on 3A because the dielec- 
tric constant e' of the surrounding medium is generally #1 [cf. Eq. (7.1), 
for example]. It is than easy to show that the boundary conditions satisfied 
by the DH kernel derive from the following integral equation: 

a?tx, y) = C~(x, ),) + T, d'; C?(x, ._) ~;(:,  y) (3.8) 

Considering again circular or spherical systems, it can be shown that, 
for the solution of Eq. (3.8) to be everywhere regular, L/R >~ 1. It transpires 
from the integral equation (3.8) that the excess density p~(y) will depend 
upon ~D and ~s, and consequently the monopole sum rule, the excess, and 
SM susceptibilities as well, whereas z(PF) does not. We can show now 
how the charge Qin of a finite DH system is related to the amplitude of the 
surface potential of the associated Coulomb kernel. Integration of 
Eq. (5.30) (written in units of the Debye length) over A yields indeed for 
large disks or spheres 

z )  /o(lyl)  d ~ ' 
Qm : f A !D~( )? )dry: f A 8' ~ 2~z l i (Z ) - e ' I o (Z  ) y 

(3.9) 

where ~ = n + ( v - 2 ) / 2 ,  2A>0 with ,iA=r D for v=2, )~A=-~s + 1 for v=3, 
0 < e ' <  oc, and where Ic~A] = 2~Z for v = 2 and 4~Z 2 for v = 3. This rela- 
tion indicates clearly that the excess charge associated with the DH 
approximation is controlled by the parameter 2 A, and how. 

Another quantity of interest is the polarization charge which may 
occur at the surface of the domains. With lY[, the modulus of y, and co 
designating the angular variables, the surface charge density is given by 

0C  ou, h ,~(z, ly[, c o ) = -  (3.1o) 
sv\  #lxl •lxl )lxl=Z 
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and the polarization charge by 

P~(Z, lyl) = z~'-~ f o-(z, ' ) l, co ) dco 

z) :o(lyl) (3.11) 
= ( 1 - ~ ' )  ~ L,--/~(z)+~'Io(Z) 

It follows that 

' : ' Z  ( Z )  ~ I~ (3.12) 
p,~( , Ivl)+P'~(Z, [yl) = ~ -  2AZIz(Z)+e'Io(Z) 

This charge density is concentrated in a thin surface layer. The total 
excess charge Q will thus be proportional to the surface ]3A] of A. Integra- 
tion of Eq. (3.12) over y results in 

Q : f~. d"y [p~(Z, l y l )+  P~(Z, lY{)] ~ (e'+ 2AZ) 1 IOA[ (3.13) 

for large Z. 
We notice that for regular values of the reference potentials 2~ 

(0 < 2 A < ~ )  and for a given Z the Neumann boundary condition e'= 0 
produces the ordinary charge neutrality of the inner part: 

~  P.4( A, Z, I V])=O (3.14) 

(for continuity reasons we extend this result to the case 2~ ~ 0, assuming 
that e' is equal to zero a priori), whereas the Dirichlet boundary condition 
e' = oo produces the neutrality of the inner part plus polarization charge: 

c o  ~ o o  

PA (zA, Z, X)'I) + P4 (-A, Z, t y l ) = 0  (3.15) 

We observe next that for the singular value )-A = 0 

~ ' 0  ( Z ) ~ 1 7 6  
p,,I ,Z, lvl)= T~ Idz) e ' > 0  (3.16) 

and that for 2 A = oo 

p;i(oo, Z, ry] )=0;  e '<oo  (3.17) 

In summary we observe that if we set a priori e.'= 0 or 2A = o% the 
DH approximation satisfies the monopole sum rule. Thus, in these 
two cases, it mimics the properties of a canonical ensemble. In all other 

822,,55/5-6-22 
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cases, the DH approximation mimics the properties of a grand canonical 
ensemble. 

In order to give an idea of the consequences of the DH approximation 
applied to finite systems notably due to the violation of the monopole sum 
rule, we give a summary, limited to the susceptibilities, of the results 
established for the disk (v =2)  and for the sphere (v= 3) in the following 
three sections. These results give the e' and size dependence of the suscep- 
tibilities, including the "grand canonical" case )~A ~ o% e ' ~  o% with 

Section 6 will be devoted to the study of the "canonical" case (i.e., 
e ' ~  0% 2,t--* o% with e'/2A--+ 0) with the purpose of understanding the 
origin of the divergence of the PF susceptibility. 

From Sections 3-5 we gather the following results: 

(A) e '=  0, all 2A. In this case we have 

1 
2~ = 2~(v - 1) + O(Z-~) (3.18a) 

0 
z:J~ 11: A = 0  (3.18b) 

X~ = X~ (3.18C) 

As expected from Eq. (2.9), the PF susceptibility produces the SL value. 
The saturation is reached with the inverse radius, in contrast with the case 
of the OCP on a sphere at F =  2, for which we found in Eq. (7.8) of II a 
saturation inversely proportional to the surface of the sphere. 

(B) e '=  ~ ,  all 2 4 . Here we find 

Z v + l  
Zl~;A(PF) = 2re(v- 1) 4 ~ ( v -  1) t- O(Z -1) (3.19a) 

Z v + 3  
7~11:A 2~(V-- 1) 4~(V-- 1) I- O(Z  -1) (3.19b) 

1 
Z~;A(SM) = .m + O(Z  1) (3.19c) 

27r(v/l-- 

The divergence of the PF susceptibility and consequently that of 
according to Eq. (2.5) goes linearly with the radius of the v-dimensional 
sphere. It is not due to the SM susceptibility, which produces the SL value, 
but to the second moment of the imperfectly screening point source. 
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(C) 0 < e' < co, )v~ > 0. In these cases, the results are 

1 a' 
Z~'I:"~(PF) 2re(v- 1)+2-~ + O(Z-') (3.20a) 

A ~' - l 1 
ZH:A 2x 2A(~--l) +0 {3.20b) 

2~ (v -1 )  ~-27 1 2A(V_I~)+O +O(Z 1) (3.20c) 

The ~' contribution to the PF susceptibility will turn out to result from 
long-range surface correlations, as shown in Sections 4.1 and 4.2. 

Notice that Eq. (3.20a) reproduces exactly the results expected from 
Eq. (2.9). 

(D) 0 < e ' <  co, 24 =0. Here we find 

Z]]:flPF) 2~(v -  1 )+27  +O(Z-~)  (3.21a) 

Z v + 3  
ZJ~ll:'4=Zl)~I~;A 2~(v -1 )  4rr(v-1) +O(Z-I) (3.21b) 

Z v + 3  1 ~' 
Z]'I:~(SM ) _  2~(v_l)+4_7~_l)+Z~(v_l)+_j_~+O(Z 1) (3.21c) 

We notice that the PF susceptibility given by Eq. (3.21a) equals that given 
by Eq. (3.20a), i.e., is independent of 2A, as expected. We notice, further- 
more, that the excess susceptibility given by Eq. (3.21b) is equal to that 
given by Eq. (3.19b). This property will be explain in Section 5.2. We 
remark lastly that while in case B the divergence of A;~]:A entails that 
of Z~I'I:A(PF), this is no longer true in D, since the divergence of AZ~'I: A is 
compensated by that of Z]'I:A(SM). 

The main conclusion to be drawn from these results is that, for a 
spherical geometry at least, the DH approximation applied to finite 
systems is capable of reproducing in the thermodynamic limit the predic- 
tions of classical electrostatics. 

In Section 8 it will be proved that this property still holds for an 
elliptic geometry. 

4. DH KERNEL A N D  L O N G - R A N G E  S U R F A C E  B E H A V I O R :  
D ISK A N D  S P H E R E  

In this section we solve Eq. (3.3) in order to obtain the DH kernel 
explicitly, both for the disk and the sphere. We then analyze their long- 
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range surface behavior. This is presented in Section 4.1 for the disk and 
Section 4.2 for the sphere. 

4.1. The Disk 

The solution to Eq. (3.3) which obeys the continuity conditions on the 
surface of the disk is given as an expansion in Bessel functions of the 
second kind and order n (n ~ N) with respect to the norms Ixl of x and LYl 
of y. The solution for the interior of the domain is a sum of two contribu- 
tions: 

G~;in(X, y)  ~_ G I  in(X, y )  q_ 2;,:' Go:in(x, y) (4.1) 

The first contribution corresponds to the familiar DH solution 
Ko(~ I x - y [ )  for an infinite system, we take here as restricted to the disk. 
It is independent of e' and can be expanded in the following way (ref. 10, 
p. 126): 

G~;i,(x, y) = K0(~c h x -  Yl) = ~ UnI,,(s< ) Kn(s> ) cos nO; 
n>~0 

So, S<Z; neN (4.2) 

where R is the radius of the disk, 0 is the angle between x and y, So = ~c [y[, 
s = ~c [x[, Z =  ~cR, s< = rain(so, s), and s> = max(so, s). Here/~,, denotes the 
Neumann factor, which is defined by 

p , = l  for n = 0 ;  p , = 2  for n r  (4.3) 

The second contribution is due to the presence of the boundary and 
hence depends upon e'. Moreover, it is regular at Ixl = [y] = 0  and can be 
written as 

2S Go;in(X, y ) =  - ~ pnC'~:inI~(so) ln(s)cosnO; So, s<Z; n~N (4.4) 
n>~O 

where the coefficients CT);in are obtained with the help of the continuity 
conditions and the minus sign is introduced for convenience. 

Proceeding with the general solution of Eq. (3.3), we have for the 
outer region 

GD;out(x, y)= ~ ,u,~CD:outln(so) F,,(s)cosnO; so<Z<s; n~N (4.5) 
n>~O 

where the C~:ou t are also coefficients depending upon the continuity 
conditions and where 

F,,(s)=ln(K~Ls)=ln(L)+ln(Z)=~D+ln(Z) if n = 0  
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F~(s)=s  " if n r  (4.6) 

A straightforward calculation of the coefficients CD: m and C~:o~ t gives 

e'K~(Z) F'.(Z) - K'.(Z) F,,(Z) 
C;:in - e'I~(Z) F',(Z) - I,',(Z) F,,(Z) ' 

and 

C D : o u  t = [ -- Z(e'I,,(Z) F;,(Z) -- I',(Z) Fn(Z)) ] - ' ;  

where the prime denotes the normal derivative. 

n > 0 (4.7) 

n~>0 (4.8) 

At this point it is convenient to split CD:in into an e'-independent part 
(Neumann part r --D:i,) and an e'-dependent part ~D;in,',[("n;A ~ the latter giving 
rise to long-range surface correlations, as shown below. Thus, with 

n g "  n: 0 n t,'- tz; 0 n; 0 n: A 
- -  C D ; i n  Jr- C D ; i n  C D ; m  = ~ D ; i n  q -  ( C D : i n  ~D;ln) = (4.9) 

Eq. (4.7) becomes 

/;,(z)'Z + ~ 5  [ 1-1 C" _ K,,( ) . e'r~ g'r~ 
O ; m - -  I ~ 2 ( Z ) + ~ I , , ( Z ) I ' , ( Z )  " n>~O, a'>~O (4.10) 

where ~ is defined as 

t?-~-~D 1~- in if n = 0 ;  r i=n  if n r  (4.11) 

From Eq. (4.10) it follows that ~' Go;in(X, F) can now be written as 

e' "~'0 2"d G D;m( X, Y) = G~:in(x, y ) + G b'ain(X, Y) q- G ~ ' : , n ( X  , ) ' )  

= ~ /G/~(s< ) K,(s> ) cos nO 
n~>0 

K,;(Z),., , 
- Y,  # , ,  c o s  , , o  

n>~O 

,o(,1 ) 
~z  Z 1 ~ , \ I ~ 2 { Z ) + ( e ~ - Z ~ , ~ ( Z ) I , ( Z )  r~cosn0 (4.12) 

n > 0  

We proceed now with the analysis of the long-range surface behavior 
of the e'-dependent term of Eq. (4.12), namely when both Z - s o  and Z - s  
are close to zero and Z is large. 
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This analysis is done using the following asymptotic representations 
for the Bessel functions of the second kind and order e e R  (ref. 10, 
p. 122-123): 

i~(u)=(2rcu)-l /2exp(u) (_ l )k (e ;k ) (2u)  ~+O(lul-~ 1) 
k 0 

([arg u[ ~< ~/2 - 6) (4.13) 

and 

K~(u) = e x p ( - u )  k~o (c~; k)(2u) -k + O(]ul-" 1) 

(larg u[ ~ < ~ - 6 )  (4.14) 

where 6 is an arbitrarily small positive number and where (e; k) is defined 
by 

(4c~ 2 -  1 ) (4e  2 -  32) . . .  [ 4 e  2 -  ( 2 k -  1) 2] 
(~; k) = 22kk ! 

with 

(c~;0)= 1 (4.15) 

With the idea to extract from the e'-dependent part of Eq. (4.12) the 
dominant contributions in (e'/Z), (1/~vZ) and n/Z, and using the result 

1 1 g' 
#,fi cos nO ~-- - - - -  " ~D (4.16) 

,,~>o -~z)  2 sin2(0/2) ' > 7  

we find, for ~D > 0 and 0 < e' < oo, 

2:A 
GD;in  z~o~ Z 2Zsin2(O/2) e x p ( - 2 Z ) e x p ( s ~  

= [2Zsin(O/2)]2 Z2~o e x p ( - 2 Z )  e x p ( s o + s ) [ l + O ( Z - ~ ) ]  

(4.17) 

Notice that 2Zsin(O/2) represents the length of the chord which 
separates two points on the surface of the disk and that in the semi-infinite 
wall limit (Z--+ o% 0--*0, Z O = y )  together with the canonical limit 
~D ~ oo we recover the polynomial decay behavior (..~e,/y2) along the wall 
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described by Jancovici [ref. 11, Eq. (2.6)]. More generally, we show in 
Appendix A how the DH kernel of the disk given by Eq. (4.12) goes over 
to the kernel of the semi-infinite plane given by Jancovici for e '=  1 (ref. 4, 
p. 55). We also point out that, as expected, Eq. (4.17) vanishes for e' = 0. 

4.2. The Sphere  

Just as in the two-dimensional disk case, the solution ~' Gs:in(X , y) of 
Eq. (3.3) for the inner region of a three-dimensional sphere S can be 
written as a sum of two contributions, namely 

where 

CS:m(X, y) = aLo(X, y) ~i ~ + G~: in(X, .}') (4.18) 

cxp(tr [ x -  Yl) 1 Gs:,n(x, Y )= 
lx-y l  

2/+  1 
= ~ )l/z II+ 1/2 (S<)  KI+ 1/2(S> ) P i (  cOs ~) (4.19) 

t~o (Ixl tyl 

(s o , s < Z ;  I~N)  

is the well-known DH solution for a three-dimensional infinite medium and 
where 

2 l+  1 
Gs;fn( x, Y) = - ~ ),/2 C~s:inI,+ ~/2(So) lz+ ~/~(s) Pz(cos ~) 

~ o  ( I x l  Py[ - 

(s o, s < Z; 16 N) (4.20) 

The Pl(cos c~) are the Legendre polynomials of degree l and ~ is the 
angle between x and y. 

On the other hand, ~" Gs;out(x, y) is given by 

2 l+  1 e' 
Gs:ou,(x, y ) =  ~ l z~>o (Ixl [yl) 1/2 Cs:nutll+l/2(S~ Fz+1r176 ~) 

(So < Z < s; l 6 N) (4.21) 

where [notice the occurrence of the parameter i s  = (~:L- Z ) /Z]  

4s s-1/2f~+l/2(s)=s -1 +'-~ if l = 0  
(4.22) 

s-l/2Ft+l/z(S)= s ~t+l~ if / r  

The coefficients C t and C z s:i~ S:out are obtained with the help of the 
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continuity conditions just as in the two-dimensional case. One finds, 
respectively, 

l t / C' - 8 'K~(Z)F, (Z)  - 2e'ZK~(Z) F~(Z) + 2ZK~(Z) F,,(Z) - Ks(Z ) f u (Z )  
S: in - -  e'I~(Z)F~(Z) - 2e'ZI~(Z) F I (Z )  + 2ZI'~(Z) F~(Z) - I'~(Z) F~(Z) 

(4.23) 
and 

E( )1 C's:out = - Z e'I ,(Z) F'~(Z) - I',(Z) F~(Z) + ~ I , (Z)  F~(Z) 

(4.24) 

where we set/~ = l +  1/2 for convenience. 
Now we apply to C t the same decomposition used in Section4.1 S;in 

[Eq. (4.9)]. Here we find 

C / = g',':o ~_ I"IzA 
S:in ~ S ; i n  - -  ~ S ; i n  

2 z K i ( z )  - K~(Z) 
2ZI'~(Z) - I , (Z)  

e ' ( 2 # + l ) I  ,2 ~ /3 ]-~ 
+ 2 Z  2 I~ (Z) + I~(Z) I'~(Z) - ~ I2(Z) 

(/~>0; e'~>O) (4.25) 

where/3 = (2# + 1 )e' - 1 and where 

2 
2 k t + l =  �9 if / = 0  

~s+  1 (4.26) 

2 # + 1 = 2 / 1 + 1  if l=~0 

Equation (4.25) permits us to rewrite *' Gs:in(x, y) as 

~' 1 2 0  2 A  Gs:in(X, y )= V) + Gsl in(X, y) Gx;in(X, . Gs:m(x, Y) q- 

2/+  1 
= 2 )1/2 ~ ( S <  ) K~(S> ) P l ( c o s  o~) 

, ~o  ( Ixl  ly l  

2l + 1 2ZK'u(Z) -- K~(Z) 
- ~ (Ixl lyl) '/= 2ZI'~(Z) iv(Z ) I.(so)Iu(s) Pt(cos 7) 

I>~ O 

8' ~ 2 /+1  [,/2(Z,_}__ff_~lu(Z)l~(Z)_A~j_~_si2(Z,] ' 

• l~(so) I,(s)(2# + 1) P,(cos c~) (4.27) 
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Here the long-range surface behavior of the e'-dependent term of 
Eq. (4.27) is obtained using the asymptotic representations of the Bessel 
functions [Eqs. (4.13) and (4.14)] plus the following identities: 

(2/+ 1)(2/~+ l)Pt(cos ~ )=  ~ (2/+ 1)~ Pt(cos c ~ ) - 2 +  - 
l~>0 l~>0 

= -  2sin3(~/2) + 2  + ~ s +  

~ s + l  

1 (4.28) 

where the last equality has been established using the generating function 
of the Legendre polynomials 

~c 
y(t, z) = ~ tlPl(cos ~) = (1 - 2tz + t 2) =1/2 (4.29) 

l 0 

as well as its first and second derivatives with respect to t, evaluated 
at t = l .  

Thus we have, for ~s > 0 and 0 < ~' < c~, 

_~c~;j _ 1 2 2 

2, + K ~S:m z~-~c 2Z 2 2Z sin3(~/2) Z({s+ 1 

x e x p ( - 2 Z )  exp(so + s)[1 + O(Z-1)]  

( 2~' ~' e' ) 
= [2Zsi~-c(2)]3 -t ~5 Z 3 ( ~ s + l )  

xexp( -2Z)exp(so+s)[1  + O( Z- l ) ]  (4.30) 

The surface correlation functions of the sphere thus have also a long- 
range polynomial decay proportional to the inverse cube of the chord 
which separates two points on the surface plus two angular-independent 
contributions proportional to the inverse cube of the radius of the sphere. 
Whereas the second of these contributions vanishes in the canonical limit 
( ~ s ~  oo), the first one will be needed to recover the SM susceptibility 
given ~in Eq. (3.20c). As in the disk case, we recover in the semi-infinite wall 
limit the behavior of the correlation functions along a wall described by 
Jancovici [ref. 11, Eq. (2.6)]. However, this behavior does not fit with the 
law conjectured by Kennedy and Federbush (ref. 5, pp. 368-369, 415), 
which is that the surface correlation function does not decay with the 
inverse cube of the chord, but with the inverse cube of the arc. Of course 
there is a question of amplitude which is needed to compare these two 
results. The problem is that, besides its definition (ref. 5, p. 364), nowhere 
in the paper quoted is any estimate of this amplitude given. 
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5. DIELECTRIC SUSCEPTIBIL ITY OF THE DISK A N D  
OF THE SPHERE 

On the basis of the results obtained in Section 4, we take up now the 
explicit calculation as well as the investigation of the size, 2A, and e' 
dependence of the PF  susceptibility and of its various contributions. 

With the conventions that /~A = ~D for the disk and 2A = iS + 1 for the 
sphere and that ~ = n  + �89  2), all the results can be given in a compact 
form including both cases. 

We assume throughout this section that e' is chosen before )CA. This 
involves in particular the grand canonical case described in Section 3. 

For  convenience, the SM, excess, and PF susceptibility are presented 
separately in Sections 5.1 5.3. 

5.1. The S M  Suscept ibi l i ty  

Following the decomposition introduced before for the DH kernels, 
namely 

~' 20 2"A Ga;in(X, y)  = Gl :m(x ,  y )  + GA':in(X, V) -k . GA':in(X, y) (5.1) 

we do the same with the SM susceptibility and we set 

Z]'~:,,(SM) ZI~;A(SM) ~ 2;o 2"J = + XI1;A(SM) + ZI'I;A(SM) 

where 

and 

(5.2) 

1 / .2p2 fA Zll:A(SM)-2v IAl d~xd~ylx--yl2G)';m(x'Y) (5.3) 

. 2;0;JisxAr 1 F2p  2 " 
- - ~ J A  -- (3A;in IX, y)  (5.4) Zll;A t J.VI) ~- 2V d"x d')' Ix Yl 2 ,'~2:0;zl," 

In carrying out the angular integration, one notices that only the 
terms n = 0, 1 (disk) and l = 0, 1 (sphere) give a nonvanishing contribution 
to the rhs of Eqs. (5.3) and (5.4) and we find 

1 Z 2 [ 
ZII:A(SM) -- 2g(v--- 1) + ~ 1 ) K~(Z) I2(Z) - Ki(Z) Ii(Z) 

1 
K~(Z) I~(Z)l (5.5) + �89 KffZ) I~(Z) - 2 

A 
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and 

I ')] 2:0:d _ _  I"0"A 2 /.'~0:0,d I i (Z)  I~(Z)- I2(Z (5.6) Z H . t ( S M ) = 2 r t ( v _ I )  C5':i; I~(Z)+~A:i~ 

where the ~,,,:o;J (m = n or l) are defined by Eqs. (4.10) and (4.25). ~A: i la  

We proceed now with the size-, 2A-, and e'-dependence analysis of Eqs. 
(5.5) and (5.6). 

Since Zlll;A(SM) and 2;0 Z1,;A(SM) are 2A and e' independent, the 
asymptotic behavior of these two terms can be taken up without having to 
distinguish several cases according to the values of 2A and e'. Using the 
asymptotic representations of the Bessel functions given in Eqs. (4.13) and 
(4.14), we thus find 

1 
ZI~:~(SM) + O ( Z  - 1  ) (5.7) 

2rc(v - 1 ) 

and 

2;0 )~I:~(SM) = O(Z ') (5.8) 

2 A  In contrast, the analysis of ZI]:A(SM) depends upon the values of 2,~ 
and e' and we are led to distinguish several cases, we summarize as follows: 

,.a e' [ 1 
)~ii:A(SM)=}-s 1 24(v--1) + O  

Z v + 3 e' 
~2:J '~M ~ - ~ +  +O(Z-I), 

II;A~~ ) =  2rr(v--1) 4rt(v 1 

Z11;A[2;A ,SM ,p__ O(Z 1), 2,~>0;, e' --- oc 

2A>0;  0 < ~ ' <  OC 

(5.9) 

2 ~ = 0 ;  0 < ~ ' <  ao 

(5.10) 

(5.11) 

2 J  Zfi;,~(SM) =- 0, 2A~>0; e'----0 (5.12) 

The set of Eqs. (5.7)-(5.12) leads to the following behavior for the 
total SM susceptibility: 

X]'I:A(SM) = 2To(v_ 1) 1 +O(Z ') 

(2A > 0; 0 < e ' <  oO) (5.13) 
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Z v + 3  1 e' 
Z]'I:A(SM) = - 27z(v- 1) + 47r(v - l i +  2~-~ - 1 ) + ~ +  O(Z 1) 

( 2 1 = 0 ;  0 < e ' <  oo ) (5.14) 

1 
Z~' I ;A(SM) = 2=(v - 1~ + O(Z 1) 

(2~>0 ;  e ' = 0 ,  oo) (5.15) 

We notice here that the SM susceptibility assumes the SL value for 
both Neumann and Dirichlet boundary conditions. In the Neumann case 
it can correctly be concluded that the system would be in the plasma state, 

.~'=o,pF, .~'=O,SM, since Zll;At l=;~U:At ) [Eq. (3.18C)], whereas in the second case this 
conclusion, although often drawn, does not hold, since ~ ~'= ~ ZU~A (PF) diverges 
according to Eq. (3.19a). 

Another comment concerns the surface contribution 2;J ZU;A(SM) to the 
SM susceptibility: It can be shown that this quantity is, as expected, 
exactly reproduced by the second moment of the asymptotic surface 
behavior of 2;a Ga:in(X, y) given by Eqs. (4.17) and (4.30). The latter permits 
us also to obtain the three-dimensional analogue of the "arcsine law" found 
for the surface part of the partial susceptibility of the disk [II, Eq. (3.28)]. 
The derivation of this law is facilitated by the fact that 

d3xd3y-- 27zlxt dlx[ lYl dlyt d3lrl/lrL 

and we find 

, . j  e '  ~ ' t r ]  ~s  [ ] r t ~  4 )  
Zii.A( r ] ) = ~  [ 2 R + ~ - l ~ 2 - R )  ~ [1 + O ( Z - ~ ) ] ;  

We emphasize that for 
Eq. (5.9). 

Ir] E 1-0, 2R] 

(5.16) 

2d  2 J  [rl=2R, ZIi;A(2R)=zI'I:A(SM) given by 

5.2. The Excess  Suscep t ib i l i t y  

Following again Eq. (5.1), we split the excess susceptibility 

rp 
fA dry ) I PA(Y) AZII:,~ ~' - IAI ,2 ~, 

into three contributions: 

ZJ a' 1 ~ 2;0 2,d 
Zl l ;A = Aj(11:A q- AZl l ;A q- Axu:A (5.17) 
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where 

A~II1; A _ /~O}A, tA dvy 1~'~ I i - -  /~0 fA a~'X G~;in(x' Y)l  (5.18) 

and 

F"PefA f, Z~ ..2:0:,J ~ .'~ 2;O;A ~ /~H:.~ - ] ~  d"y Y; I d~x u4:i ~ ~x, y) (5.19) 

since the excess density ~' PA(Y) aS nOW given by 

p~t()) = 1 - Fp " ~ ,.o +GTq~(x , ~2:~ ~v y)]  d x [GA:m(x, y) . . y )  - t-  ~A;,nt- , 1 (5.20) 

Since only the components n = 0 (disk) and l =  0 (sphere) give a non- 
vanishing contribution to the angular integration over x, Eqs. (5.18) and 
(5.20) can be performed easily and we find 

n.o K i ( Z ) I ~ ( Z )  - K~(Z)I~(Z)  (5.21) AZI~;,~=-A)~I:A 27z(v-1) - Z  

2:~ _ C0;J I2(Z  ) -  2 AZ,;,~ 2~z(v-1) A;in ~ I T ( Z )  I~(Z) (5.22) 

and 

�9 . C ~ Z Io(K[Y[) (5.23) 

Equation (5.21) implies in particular t h a t  z])(~'l: A =-- Z]~l;l~ A. This means 
that l~.he size-, 2A-, and e'-dependence analysis of the total excess suscep- 

e' 2:d t ib i l i ty  AZ, 11:A is entirely determined by that of AX~:A. According to the 
values of 2 A and e' and using Eqs. (4.13) and (4.14), we thus find 

~:' e' I 1 ) + O ( 2 A ~ ) ] ;  2~>0;  0 < e ' < o o  (5.24) AXI~:A = 2--~ ;tA(V-- 1 

Z v + 3  
AI, I~:A 2~z(v--1) 4~(v- -1)  + O ( Z  ~); )oA=0; 0 < e ' < ~  (5.25) 

Z v + 3  
~' - - -  ) + O ( Z  1); 24/>0; e'=,:~ (5.26) 

AZI~:, 2~(v-- 1) 4n(v-- 1 

c' AZIL:A-- 0; 2A>~0; e ' = 0  (5.27) 
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We notice that the equivalence between Eqs. (5.25) and (5.26) follows 
directly from the identity 

! 
0;4 O:A ~ 8; CA;in(/~,l=O;O<8"'~c2g))~-'CA:irJ(gA)O; = O O ) - -  (5.28) 

ZIo(Z) I i (Z )  
and the result of Eq. (5.27) from the fact that 

O:A . 8~ CA;in(ZA >~ 0, = 0 ) - - 0  (5.29) 

These two relations are also directly useful for examining the behavior 
of the excess density p~(y) given by Eq. (5.23), according to the values of 
5' and J~A" The results are the following: 

( Z ) o  8'Io(~cly,) . 
p~(y )=  ~ 2AZIo(Z)+e,Io(Z) , Za>0;  0 < 8 ' < o o  (5.30) 

( Z )~ 
p~(y )=  ~ Io(Z) ZA=0; 0<e'<OO (5,31) 

(_~y])~ lYl); 2A >~0; e '=oo  (5.32) 
p~(y) = I6(Z ) 

and 
pA(y)=O, 2A/>0; 8 '=0  (5.33) 

We observe that the excess densities are concentrated in a thin surface 
layer since they take their largest values (e'/Z2A, 1, 1, and 0, respectively) 
on the edge and since they decrease exponentially within a Debye length 
toward the interior. 

5.3. The PF Suscept ibi l i ty  

With Eqs. (5.5), (5.6), (5.21), and (5.22), the PF susceptibility is found 
to be given by 

Z 2 
1;A Z]',;A(PF) EKe(Z) I~(Z) + (C�89 -~- C A ; i n  ) I~(Z)] (5.34) 

2rt(v ~ 1) 

We emphasize that, as expected, Z]'I;A(PF) does not depend upon ZA, 
since the coefficient C O does not appear in Eq. (5.34). A;in 

The size and e' dependences of the PF susceptibility are obtained by 
gathering Eqs. (5.13)-(5.15) and Eqs. (5.24)-(5.27) or by direct expansion 
of Eq. (5.34). We find 

1 8' 
Z]'l:A(PF)-2rc(v_l)+~+O(Z-1); 0 ~ < e ' < ~  (5.35) 
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and 

Z v + l  
Z]'~;A(PF) = e' (5.36) 2~z(v--1) 4~(v--1) / -O(Z-t) ;  =zo  

Equation (5.35) shows that the DH approximation is capable of 
reproducing in the thermodynamic limit the results of classical electro- 
statics [Eq. (2.9)]. Notice in particular that Eq. (5.35) assumes the SL 
value only with Neumann boundary conditions. Furthermore, Eq. (5.36) 
shows that in Dirichlet boundary conditions the PF susceptibility diverges 
like the radius of the system. This divergence is due to the excess suscep- 
tibility. 

We are left now with the investigation of the "canonical case" (e' --, 0% 
2.t ~ c~, E'/2A ~ 0). The latter is discussed in detail in the next section. We 
show that the PF susceptibility still diverges like the radius of the system, 
but it does so now through the divergence of the SM susceptibility instead 
of the excess susceptibility. 

6. D H  S O L U T I O N  FOR ~ ' =  oo 

In Section 4 we studied the solution of the DH equation and in par- 
ticular the surface correlations for 0 ~< e' < oo, excluding carefully the case 
e '=  oo. In Section 5 we computed in particular the dielectric susceptibility 
for e' = co (grand canonical limit) and observed a divergence of the suscep- 
tibility because of charge fluctuations. In this section we investigate the 
other limit, i.e., the canonical limit, which has not been examined up to 
now. We recall that in the canonical limit, only the SM susceptibility 
contributes to the PF susceptibility. 

We show in this section that the divergence of the susceptibility 
(required by electrostatics) can be explained by the existence of long-range 
radial surface correlations. 

We first mention that the two previous limits correspond respectively 
to the following physical situations: 

(a) The system is subjected to Dirichlet boundary conditions and can 
exchange particles with the conducting wall. A physical realization of this 
situation would be an OCP separated by a permeable wall from another 
OCP with practically vanishing Debye length. 

(b) The system is subjected to Dirichlet boundary conditions but 
cannot exchange particles, since the wall is supposed to be impermeable. 
This implies that the system must satisfy the charge conservation condition 
<N 2 > -- <N> 2 =  0. A physical realization of this situation is an OCP within 
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another separated by an impermeable wall of zero thickness. We note (and 
show hereafter) that even a slight violation of the charge conservation 
condition transforms system (b) into system (a). 

When we apply the DH approximation to a closed system with e' = 0% 
we cannot simultaneously satisfy the monopole sum rule of canonical 
systems and the Dirichlet boundary conditions, which require the DH 
kernel interpreted as a potential to be zero on the boundary. It is, however, 
consistent with the idea of a metallic environment to require the potential 
to be constant on the boundary. The value Vo(so) of this constant is 
defined by the condition that the excess charge must vanish (r = oo) and 
it depends explicitly on the position So of the source. If one prefers to set 
the potential to zero on the boundary in order to satisfy to the strict 
Dirichlet boundary conditions (which is done, for instance, in a numerical 
simulation with the microscopic kernel of the Coulomb interaction), one 
could simply redefine the potential by subtracting from it the constant 
Vo(so). While the kernel as a correlation function remains unchanged and 
symmetric, a potential constructed in this way would no longer be 
symmetric. 

We want to investigate now the asymptotic surface behavior of the 
correlation functions for the disk in the canonical limit. The kernel is 
defined by 

Gin(S, So)-- E /~n COS nO[In(s< ) K n ( s > ) -  Cinmln(s) In(SO)] 
n~>0 

where, according to Eq. (4.7), 

g'K.(Z) F'~(Z) - K'(Z) F.(Z) 
Cin:n = e 'I , (Z) F,',(Z) - I '(Z) F,,(Z) 

and 
1 

Fo(Z)=~D, F;(Z)  = - ~ ,  F~>~,(Z)=Z -~, F ' > x ( Z ) =  - - -  
Z-+1 

In the limit of ~' ~ 0% the coefficients are 

K.(Z) 
for n >~ 1: C i n : n ; g c a  n ~ C i m n : c a  n = I,(Z) 

for n=O: 
Ko(Z). CD 

C i m o . g c a n  "~- i o ( Z  ) , g r -). 0 

KI(Z). ~D 
Cin ;o ;can  = - -  I 1 ( Z )  , ~r --~ O0 
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One can obtain the canonical  solution from the grand canonical  one 
with the simple relation 

(Ko(Z) + K~(Z)~ 
Gi . . . . .  (S, SO, 0) = Gin;gcan(S, SO, O) + Io(S ) Io(So) \ I - f ~  I - - - ~ ]  

1 Io(s) Io(so) 
= Gi~:gc.n(s, s o, O)+ Z Io(Z) I~ (Z) (6.1) 

If the observat ion point  is on the boundary ,  i.e., s = Z, we obtain 

1 Io(so) 
Gin;can(Z, SO) = ~ / l ( Z  ) (6.2) 

and for the surface potential 

No(so) = G i n ; c a n ( Z  , So) 
1 Io(so) 1 

--  e ~z-s0~ for large Z (6.3) 
Z I i (Z )  Z 

]-'his relation indicates clearly that  the surface potential is vanishing 
when the distance between the source and the edge is larger than a few 
Debye, lengths. 

In particular, if both arguments  are on the boundary ,  we find 

G m ; c a n ( Z  , Z) : Io(Z ) Io(Z )/()|Ko,Z, . 

KI(Z)~  1 Io(Z) 1 
= -- - -  ~ --  for large Z 

(6.4) 

This indicates that  the correlation function on the surface does not  
vanish as in the grand canonical  case, but  is p ropor t iona l  to 1/Z. 

For  a complete analysis we need to know the decay of the kernel when 
the two arguments  s and So are close to Z. Al though the complete kernel 
in the grand canonical  limit is of short  range, 3 it is easier to use the decom- 
position of Eq. (4.12), which contains two short-range parts and a surface 
part. 4 This last sum can be explicitly written, depending on the limits, 

1 Io(s) Io(so) 1 In(s) In(so) 
Gsurf;gcan(X' Y) = Z Io(Z ) I~(Z) Z ~ Iz,, cos nO In(Z) I ' (Z)  

e' Io(s ) Io(so) 1 In(s) I.(so) 
Gsurf;can(x' Y) = - ~z)Z Id2(Z) Z ~ ~t. cos nO ,,~t I,~(Z) I ' (Z)  

3 In fact one can prove that 0 < Gm;gcan(X, y)< Ko(lx- y[) in Dirichlet boundary conditions. 
4 The surface part is long ranged for e' < c~ but becomes also short ranged for E' = oo. 

822/55,/5-6-23 
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Since the angular average ( n = 0 )  of the canonical surface kernel 
vanishes in the limit of ~D/e' ~ ~ ,  one has 

. 1 Io(s ) Io(so) (6.5) 
asurf;can( X, Y) = Gsurf:gcan(X, Y) + ~ / - ~ ~  

One can show that ~'= ~ Gsurf:gean(X, y) is a periodically replicated Ko (see 
Appendix A) and therefore is short ranged. The remaining angular- 
independent term can be expanded for large Z and reads 

asurf;can(X, y) ~ t  Z e - ( Z  s) e (Z-sol (6.6) 

This demonstrates that a finite canonical system indeed has long-range 
surface correlations in the case of Dirichlet boundary conditions. These 
correlations do not depend on the separation between the two points but 
on the distance from the wall only and lead to a divergence of the suscep- 
tibility which is linear with the size of the system. We note that the 
amplitude of this divergence is the same as the one we found in the grand 
canonical limit [-Eq. (5.36)]. Indeed, we have with Eq. (6.6) 

F~-p 2 f ~ Z 
X 1,:A(SM) = 2 - ~  .4 (x - y)- Gsurf;can(x, Y) d2x d2y "~ 2-~ (6.7) 

Since the radial correlations are of order l /Z ,  they vanish in a system 
which is infinite at least in one direction. This shows that in order to 
explain the divergence of the susceptibility in a canonical system in 
Dirichlet boundary conditions in the thermodynamic limit one has to com- 
pute first the susceptibility and only afterward take the limit Z = •R ~ ~ .  

As the last point of this section we want to discuss briefly the cross- 
over from the e' < ~ to the s' = ~ regime. An infinite system has the some- 
what puzzling property that the surface correlations increase linearly with 
e' but completely vanish for s ' =  ~ .  A finite system, on the other hand, 
exhibits, as we show hereafter, a continuous transition from a dielectric to 
a metallic environment. 

The surface part of the kernel given by Eq. (4.12) can be written 

1 E I '2(Z)  + (s'fi/Z) I , ( Z )  I ' , (Z)J  --Z cos nO Z >0 #~ 

The results of Section 5 assume that s ' /Z  -* 0 (~' fixed and Z ~ ~ )  or 
s ' =  ~ (metallic boundary conditions). For  convenience we call the first 
case the dielectric regime and the second the metallic regime. The crossover 
takes place at s ' /Z  ~ 1. 
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How do the correlation functions switch from the dielectric regime 
behavior to the metallic one? If we increase e', only the small-n terms of the 
sum remain proportional to n. The large-n terms on the contrary decrease. 
This means that the amplitude of the surface correlations decrease at short 
distances and increase linearly with e' for long distances only. The distance 
at which the e'/r 2 behavior becomes valid is itself a function of e ' /Z  and 
also increases with e'/Z. If now e ' /Z  increases beyond one, this distance 
becomes larger than the size of the disk and the correlation function cannot 
reach its asymptotic e'/r 2 behavior. The surface correlations behave as in a 
conducting environment. 

As an illustration we have plotted the DH susceptibility as a function 
of Z (see Fig. 1). We observe that for Z,~ e', the susceptibility increases 
linearly with the size of the system as in a conducting environment, but 
saturates at a value 

1 g '  
Z = ~--~ + }--s (6.8) 

if Z becomes larger than e'. 

7. N U M E R I C A L  RESULTS:  M O N T E  CARLO S I M U L A T I O N S  
OF T H E  OCP 

The purpose of this section is to confront the results obtained "with the 
DH approximation with a "real" system. For simplicity we have chosen an 

Fig. l. 

10.0 I I I I I P r I I 

s S~ 

E' 8.0 = c~ , 

4.0 / "  

2.0 . ~  

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 
Z 

The PF susceptibility of a disk-shaped system in DH approximation as a function of 
the size and for E' = 10 and e' = oo. 
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1 log O(rl,  r2) = -- 2g 1 

where 

OCP subjected to different boundary conditions and in either a canonical 
or grand ensemble. The boundary conditions are now put directly in the 
microscopic kernel and the number of particles is allowed to fluctuate or 
not, depending on the ensemble. We shall see that the problem of the 
canonical or grand canonical limit is here completely removed for 6 '= oe, 
but not for e' < oo. 

The pairwise interaction between two point particles is given by 

N 2 2 
(r 1 -- r2) 2 zl log L2 R--~//  L 2 261 ~-5 - 2 r l r 2 +  

r l r2~ 

81 - - 8  2 3 -  
gl + g2 

and R is the radius of the disk. 
The first term is the direct interaction between the particles, the second 

the interaction between a particle and the image of the other (or vice 
versa). For simplicity we set e 1 = 1 and g2 = g'" 

We can extract the terms which depend on the scale length of the 
logarithmic potential and obtain 

1 1 (r~22r2)2 A ( r l r 2 , r 2 r ~  ~b(r~ , r2)=-~ og ~log 1 - 2 ~ - + ~ - )  

- ~ l o g  ( I + A )  (7.1) 

Note that in the case of metallic boundary conditions (A = -1), the 
kernel becomes independent of the scale length L. The kernel with L = R 
is also given in ref. 12. 

For numerical reasons, we use the following representation of the 
kernel: 

1 (rl -r2)2 1 ( R2 ) 
~(rl, r2)= - ~ l o g  R2 - ~ l o g  

. . . .  A l ~  2r2)2 R 2 - r 2 R 2 - r 2 ~  d 1 2  + R2 R2 j -~log ( R2)~ (7.2) 

We need also the sell-interaction. Removing the divergent term from 
the kernel, we find 

A tps(r) = -  ~ log ((R2Rf2)2) -d~- log ( ~ )  
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The reader may note that in the limit case of e '=  oo the kernel in 
Eq. (7.2) reproduces well the Dirichlet boundary conditions, i.e., the poten- 
tial is zero on the boundary. In the opposite limit case, namely e'= O, the 
kernel in Eq. (7.2) does not reproduce the strict Neumann conditions 
(which implies that the field is zero on the boundary). By Gauss law, it is 
indeed impossible to satisfy the Neumann boundary conditions if the 
potential is produced by a single charged particle. A neutral assembly of 
charged particles, however, does produce a field that vanishes on the 
boundary. For that reason, it does not make sense in the case of e'= 0 to 
perform a grand canonical simulation that would allow charge fluctuations. 

The interaction between the particles and the background is obtained 
by integrating the kernel of Eq. (7.1) over the disk. One finds 

 Or2 @p.b.(r)=2R 2 -- -~- + No log (1 +A)  

where Noe is the total charge of the disk and e is the unit charge. 
The energy of the background is given by 

log (1 + A ) 
8 

The total potential energy is now 

V({r,}) = e 2 gt(ri, rj) + ~ ~,(L) + ~ ~pb(ri) + Vbb 
i ' l 

(7.3) 

It is interesting to analyze separately the scale-dependent part of the 
potential energy: 

~/rscale = - -~ log  (N-- No)2(1 + A ) - N ( 1  - A ) }  

In the CMC simulations, this energy drops out in the observables, but 
the situation is very different in the grand ensemble. We have to consider 
two cases: 

(a) e '=o~:  Since A = - 1 ,  the quadratic term ( N - N o )  2 in Vsc~L~ 
vanishes and we can absorb the linear term simply in the chemical poten- 
tial, which has to be chosen such that the mean number of particles ( N )  
is equal to No. 

(b) e '<  0o: The quadratic term does not vanish (except if L = R )  in 
this case and we obtain fluctuations which depend now explicitly on 
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log(L/R) = ~-D. If L/R -~ ~ ,  all fluctuations are suppressed (as in the DH 
theory) and the grand ensemble behaves like the canonical ensemble. One 
may ask if the grand ensemble has a physical meaning if the observables 
depend on the (usually) arbitrary scale length of the Coulomb logarithmic 
potential. In fact, one can even argue that the property of the grand ensem- 
ble, i.e., that it can exchange charges with the environment, is in contradic- 
tion with the hypothesis that the environment is a dielectric without any 
charges. Nevertheless, we present the MC results even for that situation in 
order to have a comparison with the DH results. The three-dimensional 
case is analoguous. 

In the CMC simulations, we use the standard Metropolis algorithm. It 
may be noted that rejected moves resulting from a collision of an electron 
with the (infinite) wall surrounding the system must be counted in the 
averaging. 

The GC MC  simulations are based on the work of Adams r and a 
short review about the different methods is given in ref. 15. The main 
difference between the GCMC and the CMC simulations is that we have, 
besides the usual moves, attempts to add or remove a particle. The 
probability of acceptance of a particle insertion or removal is 

Paoc(N+ 1, N ) =  rain(l, RN+I;N) 

Pace(N- 1, N)= min(1, R u 1;N) 

where 

RN+I N_e3~mx_AU ) (N)  
; -- N + I  

N 
R N l : N ~ e  fl(~ex+AU) 

(N) 

The symbol /~ex denotes the excess chemical potential with respect to a 
perfect gas. The ratio (N) / (N+ 1), respectively N/(N),  accounts for the 
factor l/n! in the grand partition function. 

While in most GCMC simulations of multicomponent Coulomb 
systems (1~1s) only neutral pairs of particles have been added or removed, 
we cannot (and do not want to) have this restriction in an OCP. The 
reason why particles are usually inserted by pairs is based on the fact that 
charge fluctuations in a normal Coulomb system are very small. This is not 
true in the case of penetrable metallic boundary conditions, where the 
charge fluctuations are proportional to the surface of the system. Such a 
system has been solved in the grand ensemble by Forrester, ~19) who corn- 
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puted the charge fluctuations of an OCP on a strip. The advantage of the 
grand ensemble is that the truncated pair correlation function does not 
have to obey the sum rule valid for a canonical ensemble 

1 f d r ~ ' x  N ~- , ,dx YP2" t , Y ) = - I A -  ~ 

We therefore may expect a different behavior of the correlation function in 
the two ensembles. 

We focus our attention on the three following aspects: 

1. The Debye-Hfickel theory predicts two different regimes of the 
polarization fluctuations, depending on the parameter 

z tcR (2FN) 1/2 

8'  8 ~ 8 ~ 

For a given e', we expect a linear increase of the polarization fluctuations 
as a function of N 1/2 in the range 0 < (2FN) 1/2 < 8'. For higher values of 
(2FN) ~/2, we expect a saturation. 

2. Electrostatics gives the following relation connecting e, Z, and ~': 

1 + e' + 2~re'Z 

1 + e ' - 2 ~ Z  

where 

fl (, P~- ) 
z -  2 IAI 

depends of course on the number of particles and on the boundary condi- 
tions. We compare systems of different sizes and of different e'. 

3. The Debye Hiickel theory produces a result which depends on the 
parameter ~D. If ~D is much larger than e', the system has very small 
charge fluctuations and the Debye-Hiickel solution is expected to mimic a 
system in the canonical ensemble. For ~D close to 1, the Debye-Hiickel 
approximation allows charge fluctuations similarly to a grand ensemble. 
The total polarization fluctuation z(PF), which is the sum of the second 
moment g(SM) and of A X, is expected to be independent of CD. The 
purpose of these simulations is to check the validity of these analytical 
results. 
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7.1. Special Numerical Techniques 

The generation of configurations in the grand ensemble is 
straightforward and barely more complicated than in a canonical ensemble. 
The excess chemical potential is obtained on a short preliminary run, 
which adjusts the chemical potential until the average number of particles 
is close to the intended N. The precise calculation of the truncated pair 
correlation function is difficult, because one cannot simply subtract from 
the pair correlation function the square of the densities, which is possible 
in a translationally invariant system (for example, a system in periodic 
boundary conditions). The calculation of the truncated pair correlation 
requires two steps: in a first run, we compute the pair correlation function 
and the density. The pair correlation, which is naturally obtained in a com- 
puter simulation, is defined in terms of the two-body correlation functions 
through the following relation (for the notations cf. II): 

/}2:disk(lrl ) = f~ dO Irl/)2;disk(lr], 0) 

1 
/)2:disk(It], 0) = ~ fDA(r) d2x prA{X' X + r(0)) 

The function /62;dlsk(Irf) represents the average of the two-body 
correlation function over all different origins and angles, and x and r 
represent two-dimensional vectors. 

In a second run, we compute the average over all origins and angles 
of the product p l (x )p l (x+r (0 ) ) .  This function must then be subtracted 
from the pair correlation function in order to give the truncated pair 
correlation function. The computation of the average of the product of the 
densities is most conveniently done with a "Monte Carlo simulation of 
independent particles." N particles are randomly distributed on the disk 
with a probability density corresponding to the density measured in the 
first run. The "product of the densities" is now computed in the same way 
as in the previous real simulation. In the case of a GCMC simulation, this 
function must be scaled with the factor ({N)/N) 2, because the average 
number of particles ( N )  is not exactly equal to N. 

A last comment about the sampling. Since the density in a finite 
system may vary over several magnitudes (especially for e '=  ~v, where the 
electrons build up a surface layer), the rejection method in the computation 
of the product of the densities is inefficient. We use a mapping technique 
based on the following idea. Define 

s y=f(x), y~  [0; R-1 with f(x)=c p(x')2=x'dx' 
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If y is uniformly distributed on the interval [ f (0) ,  J ( R ) ] ,  x = f - l ( y )  
has a distribution according to the weight factor 27tp(x). Since p(x) is not 
known analytically, the function f-*(y) is replaced by a numerical table 
combined with a linear interpolation scheme. 

7.2. Resul t s  

We show in Table I VII the results of the Monte Carlo simulations in 
the canonical ensemble and in the grand ensemble. The dielectric constant 
5' takes the values 0, 10 10, oo. The number  N of particles ranges from 5 
to 220 and F =  0.5. 

The error bars 4Z for the polarization fluctuations and As for the 
dielectric constant are estimated in the following way: ten subaverages of 
Z during a run of 40,000 moves per particle are computed. The error AZ is 
defined as 

[Var iance(x)]  1/2 

 z=2 I_ F6 j 

and de is defined as 

The symbol <N; N> in the tables stands for < N  2 > --  < N >  2. 
We note that the polarization fluctuations )s  and the dielectric 

constant e do not depend (within the error bars) on the ensemble. The 
values of X and e increase with the number  of particles. The dielectric con- 
stant e seems to be a little larger for large e' than for small g. The accuracy 
of )~ decreases for large e', but the accuracy of e increases resulting from a 
less nonlinear relation between ~ and X. A puzzling observation is that the 

Table I. E'=OO, Canonical Ensemble 

N Z~ AZ~ e As 

5 0.581 0.078 2.163 0.156 
10 0.973 0.821 2.946 1.641 
20 2.223 1.080 5.446 2.167 
40 2.724 0.181 6.446 0.361 
80 3.849 0.262 8.698 0.361 

120 5.674 0.707 12.344 1.414 
220 7.183 0.456 15.366 0.921 



1222 Choquard et  al,  

Tablel l .  ~ '=10,  Canonical Ensemble 

N ZT~ AZ~ ~ A8 

5 0.526 0.068 2.16 0.17 
10 1.386 0.652 4.7 0.39 
20 2.163 1.545 8.13 10.68 
40 1.772 0.143 6.23 0.62 
80 2.361 0.242 9.28 1.49 

120 2.558 0.103 10.56 0.72 
220 3.063 0.080 14.83 0.89 

Tablel l l .  ~ '=1 ,  Canonical Ensemble 

N Xn AZ~ e Ae 

5 0.376 0.039 2,20 0.20 
10 0.202 0.063 1.50 0.20 
20 0.602 0.301 4.02 17.78 
40 0.925 0.199 25.53 - -  
80 0.783 0.041 8.23 1.81 

120 0.803 0.017 9.19 0.91 
220 0.880 0.010 15.72 1.49 

Table IV. e'=O, Canonical Ensemble 

N Z~ AZ~ e Ae 

5 0.251 0.031 2.01 2.57 
10 0.219 0.060 1.78 0.51 
20 0.263 0.129 2.11 1.03 
40 0.390 0.077 4.55 6.24 
80 0.449 0.050 9.76 205.8 

120 0.456 0.014 11.45 4.19 
220 0.469 0.004 16.15 2.03 
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T a b l e V .  E ' = ~ ,  Grand Ensemble 

N ZT~ ztZ~ s Ae (N;  N )  

5 0.628 0.062 2.26 0.12 3.52 
i0 0.981 0.149 2.96 0.30 5.66 
20 1.726 0. t 82 4.45 0.36 9.65 
40 2.904 0.221 6.81 0.44 12.94 
80 3.885 0.299 8.77 0.60 16.75 

120 5.004 0.261 11.01 0.52 22.85 
220 7.589 0.228 16A8 0.45 31.62 

Tab leV I .  E '= IO ,  Grand Ensemble 

N Z~ AX~ e Ae (N;  N )  

5 0.507 0.045 2.12 0.11 2.86 
10 0.731 0.09l 2.69 0.24 3.95 
20 1.260 0.200 4.27 0.67 5.40 
40 1.892 0.115 6.77 0.53 6.91 
80 2.398 0.088 9.51 0.55 8.99 

120 2.623 0.086 11.03 0.62 9.79 
220 3.077 0.131 14.97 1.36 11.13 

TableV l l .  E ' = I ,  Grand Ensemble 

N ;(~ AZ~ s As (N; N)  

5 0.363 0.050 2.14 0.25 1.63 
10 0.470 0.114 2.78 0.85 1.96 
20 0.556 0.146 3.51 1.66 2.17 
40 0.757 0.077 7.24 2.90 2.37 
80 0.809 0.019 9.45 1.04 2.42 

120 0.839 0.024 11.44 1.93 2.58 
220 0.886 0.018 16.60 2.83 2.65 
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error bars are particularly high for canonical systems having 20~80 
particles. This problem seems to be absent in the grand ensemble. 

The polarization fluctuation displays two behaviors. At e '=  ~ the 
fluctuations are roughly proportional to xfN. For  smaller e' (for instance, 
e '=  10), they saturate more or less quickly at the value predicted by elec- 
trostatics. This is in agreement with the Debye-Hiickel approximation, 
which also predicted the two regimes with a crossover at kR= 
(2FN) 1/2 = e'. 

The charge fluctuations (N;  N )  in the grand ensemble are roughly 
proportional to x/N, i.e., to the surface for e ' =  os, and much smaller for 
other values of e'. Figures2-7 and 11 13 show the radial density, the 
truncated radial pair distribution function (TRPDF),  and the partial 
second moment of the T R P D F  for different ensembles and e'. 

The partial second moment is defined as 

fir Zll;A(r) = - - 2  o der' r'2fir(lr'l) 

It shows the contribution to the total second moment [=Z11;.4(2R)] 
of pairs of particles with increasing separation. 

Figures 2-4 show an OCP at e ' =  0 in the canonical ensemble. Since 
the number of particles is fixed ( N =  40), the second moment is identical 
with the polarization fluctuations. There are no long-range correlations 
near the wall and the value of the polarization fluctuations is the bulk 
value (1/21r). 

t.O 1 O0 r -  

d3 
" (3  
(1) 
U 

E 
O 
z 

50 

Canonical Ensemble, s' = 0 

I I 

O0 50 

r/R 

Fig. 2. Normalized density obtained by a canonical MC simulation with Neumann 
boundary conditions. The system is an OCP (40 particles) on a disk at F= 0.5. 
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Fig. 3. 
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Truncated radial pair distribution function (TRPDF) corresponding to the situation 
of Fig. 2. 

Figures 5-7 show an OCP at e ' =  oc in the canonical ensemble. The 
density profile reflects the attraction of the particles by their images on the 
other side of the wall. Figure 6 is particularly interesting, since it reveals the 
existence of a depression in the T R P D F  for large separations between the 
particles. As shown in Appendix B, such a behavior can be reproduced with 
the D H  approximation in the canonical limit. The behaviors we obtain for 

Fig. 4. 
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Partial second moment obtained from the TRPDF of Fig. 3. 
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Canonical Ensemble, ~ ' =  oo / 

Fig. 5, 

50 

0 0  

i i 

00 50 I 00 
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Normalized density obtained by a canonical MC simulation with Dirichlet boundary 
conditions and for the system of Fig. 2. 

the disk and for the sphere are respectively given in Figs. 8 and 9. 
Qualitatively, one can understand the behavior of the TRPDF by consider- 
ing the sketch given in Fig. 10: For very small separations, the contribution 
to the TRPDF is essentially given by the bulk part. Now let us consider a 
point A close to the surface. For intermediate and large separations (say r), 
the TRPDF is made up only of surface contributions which are propor- 

0o r "  

> ,  

" Q  - 5 0  

13- 
s 

r'r" .1 00 
F-- 

i i i i 

50 1 oo 1 50 2 oo 

r/R 

Fig. 6. TRPDF corresponding to the situation of Fig. 5. 
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Fig. 7. 
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Par t ia l  second m o m e n t  ob ta ined  from the T R P D F  of Fig. 6. 

tional to the intersection of a circle (centered on A) of radius r with the 
surface layer. Thus, it can easily be understood that the T R P D F  increases 
from r ~  r 2 up to a maximum near r-~ r~ and then rapidly decays to zero. 

Figures 11-13 show the same system in the grand ensemble. The pair 
correlation function now decays very quickly and there are no long-range 
surface correlations. The partial second moment  does not converge exactly 
to 1/2r~, as predicted by the Stillinger-Lovett sum rule, but to a value 

Fig. 8. 
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r/R 

The T R P D F  for a disk in D H  a p p r o x i m a t i o n  and  canonica l  l imit  at Z = ( 2 F N )  1'2 = 

(2 x 0.5 x 40) 1'2 ~ 6.36. 
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Fig. 9. TRPDF for a sphere in DH approximation and canonical limit at Z =  12. 

which is substantially lower. This can be explained by the fact that the par- 
ticles near the wall include in their screening cloud also "image charges" 
which are of course not counted in the second moment. The polarization 
fluctuation as the sum of the second moment and A Z, however, is much 
larger than 1/7c and has about the same value as the polarization fluctua- 
tions (alone) in the canonical ensemble. 

A 

Fig. 10. 

C 

Qualitative description of the depression of the TRPDF in the canonical ensemble 
and in Dirichlet boundary conditions 
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Fig. 11. Normalized density obtained by a grand canonical MC simulation with Dirichlet 
boundary conditions and for the system of Fig. 2. 

8. ELLIPSE IN DH A P P R O X I M A T I O N  

Here we deal with the elliptic geometry and therefore we shall use 
elliptical coordinates r and a defined by 

[ ~ ~1/2 1 ( c h r c o s a ; s h r s i n ~ )  (8.1) 
-(sh och ot'J 2 

-1 50 

-2 O0 

i i _ i i i 

oo 50 1 oo 1 50 2 oo 

r/R 

Finite Classical Coulomb Systems 1229 

Fig. 12. TRPDF corresponding to the situation of Fig. 11. 
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Fig. 13. 
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Partial second moment obtained from the TRPDF of Fig. 12. 

with ~ ~ [0, oo ] and cre E0, 2hi .  Here r = ~o defines the elliptical boundary  
of A. The ratio of the two axes of the ellipse is b/a = th %. In this section, 
all the distances are expressed in units of (IAl/n)  ~/2. The length of an 
infinitesimal vector dx is given by 

(sh  2 : + s in  e 0"~ 1/2 
dx2-=h2(z ,a) (dz2+da2);  h ( z , a ) = \  sh~oo~-~  ~ } (8.2) 

In the limit % --* 0% the ellipse becomes a circle and h(r, a) 
We introduce the dimensionless parameter  

. 

qa = 2nFp ]A [/n = 2Fp IA I = tc 2 IA ]/n (8.3) 

In order  to simplify the writing, G~(x, Xl) will be called ~p(x) in this 
part, where x and Xl are, respectively, associated with (z, a)  and (zt,  aL). 
With the definitions 

2i~(a) = lim q~(z, a)  ,i~ = lira ~o(v, a)  
~ ~ " -  ~g (8.4) 

#re(a) = lim ~?~q)(~, a) #~ = lim ~ 9 ( z ,  a)  

the boundary  conditions for q)(x) are 

Zi"(a) = 2~ = 2(a), ktm(a) = e'#~ (8.5) 

Whereas the disk can be solved exactly by using Bessel functions, 
Mathieu functions, which occur in the elliptic case, make the situation 
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much more difficult. Nevertheless, we are not concerned with the exact full 
solution, but only with the asymptotic behavior of ~o(x) far away from Xl. 
As q is very large compared to one, because the system is assumed to be 
macroscopic, we shall be able to solve approximately the problem in this 
limit. 

We proceed in the following way. We first look for the relations 
between 2 and # outside and inside the boundary (the differential equations 
are of elliptic kind). Then, by using the continuity conditions [Eq. (8.5)], 
we obtain the three functions 2, #in, and /~out. Finally, (p in A will result 
from Green's identity. 

8.1. Outs ide  the  Ellipse 

As ~o(x) is harmonic in this domain, we expand ~o as a function of ~r 
in a Fourier series: 

1 
- e i ' ~  ( 8 . 6 )  ~o(T, o-)=~ %(T) g~(~); g.(o) (2~r)i/2 

n 

Writing the Laplacian in the (r, a) coordinates, we deduce the 
following differential equation for the ~o.(T): 

~ - n  2 %(r) =0 (8.7) 

For n ~ 0, the nondiverging solution in the limit T ~ oo is 

<p,,(~) =A.e- I~ l~  ~0); ) . .=A."  #out= -rnlA" (8.8) 

from which follows the expected relation between 2 and #out: 

o u t  #, = - Jn l2 , ;  n # 0  (8.9) 

For n = 0, both solutions of Eq. (8.7) have to be kept 

(p0 ( r )=AoU-r* ) ;  20 Ao(r0 "c*); o~t_ = - #o - A o  (8.10) 

T* is the aforementioned arbitrary constant, which controls the total charge 
of the conductor. This leads to the relation 

Zo #~)ut (8.11 ) 
S o - -  T *  
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8.2. Inside the Ellipse 

It is somewhat more complicated to get the relation between 2 and #in. 
We start from Green's identity, which follows from Eqs. (3.2) and (3.3), 

q~(x) = Ko( q I x -  xl] ) 

+ ~ [h(%, a') 2(a') q cos c~Kl(qD) + pin(a') Ko(qD)] da' (8.12) 

where Ko and K 1 are the modified Bessel functions of order 0 and 1, D is 
the distance between x and the integration point x'= (%, a'), and ~ is the 
angle between the straight line xx' and the normal line to the ellipse at the 
point x' (cf. Fig. 14), 

Let d be the shortest distance from x to the ellipse at the point P. 
Some care has to be taken in the limit d-~ 0, because in that case D may 
vanish and this causes KI(qD) to diverge. In Appendix C we show the 
following limit for the integral I: 

1 
da' h(~ o, a') 2(a')q cos :~Kl(qD ) I=~-s 

1 1 
a~o '  2 " ~ ( 6 ) + - ~  da'h('co' a')2(a')q~i_mo{C~ (8.13) 

As cp(x) tends to 2(a), we deduce for d =  0 

2(a) = 22~(a) + 1 ~ [h(zo, a') 2(a')q cos ~KI(qD) + ~m(o") Ko(qD)] da' 
7~ 

(8.14) 

~ . ~  ( ' [ 0 , 0 " p  ) 

t d 

x 

Fig. 14. 
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where 2~(o-) indicates the value of qo on the ellipse for the infinite DH 
problem 

J~(o-)=Ko(qlx-x~!) for x = (~o, ~r) (8.15) 

In this form, the relation between 2 and / n  is not very useful. At this 
point we shall take into account that q is large compared to one. In this 
limit q>> 1, the integrals with Ko(qD ) and KI(qD) can be expanded when 
the factors of these functions are slowly varying. So we shall get a relation 
between the low-frequency Fourier coefficients (In[ "~q) of 2 and /)n. By 
using the expansions (C.12) and (C.15) of Appendix C, we are led to 

1 /#in"% 1(2) (/,~lI1 1~)  
= - -  + + o  . . . .  I n r , ~ q  (8.16) 2~ 2 2 ~ ( ~  -q7 ~ ~ \q3 ,q4 j ,  

The contribution of these coefficients to the sum of the Fourier 
series is 

1 /  \ 
qtht 0,o-v+   Inl ~ q (8.17) 

We have recalled Inl <~ q in order to point out that the integrals in 
Eq. (8.14) are only accurately evaluated in the "low"-frequency limit. 

8.3. S o l u t i o n  fo r  k and p 

It follows from Eq. (8.57, (8.9), and (8.117 that 

# . -  [nl ~. (n @0), ~ o  - -  (8.18) 
"C o - -  T* 

The leading term of ).~ is _k n [Eq. (8.16)]. Then the leading term of 
u~ is 

#~ ~-2e'lnl 2~' (n~O, Ini~q); p~l=o ~ 2e' /~"~ (8.19) 
T O - -  T* 

For 2(o-), we have to keep the second term of Eq. (8.17) because 2~(o-) 
is exponentially decreasing over a distance of the order of q- l ,  

2(o-)___22~(o-)+ 1 r [/in(o'} ~.  

\),(-;7o, 77/' 
in[ <{ q (8.20) 
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Now it remains to calculate '~2:, always for In[ ~ q. For  that we use the 
expansion [Eq.  (C.12)] based on the Appendix C, 

e -- ino" f -- d a ' ~ K o ( q D 1 ) = g , * ( a l p )  da ' e  t ~ ' - ~ e )  
h('c o, a ' )  K~ 

r -- qdl 
* . 

q h i p ( 1 - d ,  hye3) ~/2 g,,(a~e), In[ '~q (8.21) 

where d~ (cf. Fig. 15) is the distance from x 1 to the ellipse [a t  the point  
(%, a l e ) ]  and hie is 

hip = h(zo, ~rle) (8.22) 

The sum of the "low"-frequency contr ibut ions to ~in(o') is carried out 
with a convergence factor e -=tnt. The constant  ~ is chosen according to 

q-1 ~ , ~  1 (8.23) 

Taking into account  

ch ~ cos 0 - 1 1 
= ~ (8.24) [nle in~ ~l,k (ch ~ -  COS 0) 2 ~'~ 1 2 sin2(0/2) 

n ~,~0 

we obtain j[Lin(o'), 

( ~ )  e qdt { 1 
]2in(o') ~ h l A l _ d l h ; - ~ ) l / 2  

1 } 
+ 2 sin2((a - a le) /2  ) 

(8.25) 

('CO, O'IP) 

X' dl  

Fig. 15. 
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For 2(o), the first term of Eq. (8.20) is negligible (q ~ ~ I~r- ~r~el) and 
then we have 

)o(cr)- q2h(%, o') hip(1 - dlhl~)  1/2 ~ 2sin2((~7-cr~e)/2) 

(Inl ~q ,  ~ I(r--~rxe[) (8.26) 

8.4. r in the  Ell ipse 

Since we know 2 and #in on the boundary, it is not difficult to get q~ 
inside the ellipse with the help of the Green's identity [Eq. (8.12)]. 
Assuming that q I x - X l [  > 1, we can neglect the first term. In the integrals 
with Ko and K1, the leading contributions come from the neighborhood of 
the point on the ellipse (Zo, ~e) which is nearest from x. As the functions 
2 and ]/in are  slowly varying (compared to K0 and K1), the "high-q" expan- 
sions (C.12) and (C.15) can be used. It follows that 

~o(x) = G~(x, xl ) 

~--- (,J~(O-p) "Jr- ]/in(o'P)~ e--qd 
~ / 2 ( 1  ~-d~3) 1/2 

= q2hehle(1 - dh~3)I/2(1 - dh~e3) 1/2 + 2 sin2((crp - a le  

(Inl ~q ,  c ~  I~e-cr~el)  (8.27) 

where d is the distance from x to the ellipse [at the point (r0, oe)]  and 
he is 

he = h(%, oe) (8.28) 

Equation 18.27) gives the leading term of (p(x)= GA(X, Xl) for q >  1. 
When r o ~ oo, the Green's function of the circular domain [Eq. (4.17)] is 
recovered because he and hie are then equal to 1, ~ e - a l e  becomes the 
angle between x and xl ,  and the roots in the denominator represent 
unsizable corrective contributions. For  finite To, G~(x, Xl) also decreases 
exponentially in directions perpendicular to the boundary and exhibits 
long-range correlation along this boundary, with a new law which 
generalizes that of the circular case. The qualitative new effect is the 
dependence of G~(x, Xl) on the curvatures of the boundary near x and xl ,  
which comes from the factors h e and h~e in the denominator of Eq. (8.27). 
This results from a "needle effect" on the conductor, as been mentioned in 
introduction. It follows that the points r = % ,  cr = 0  and 7r are more 
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correlated than the points ~ = to, cr = zt/2 and 3~/2, although the distance 
is larger in the first case. An easy calculation shows that 

G%E(vo; 0); (%; ~)] 1 a 2 
G~ [(%; rr/2); (to; 3~/2)] - th2ro - ~ > 1 

(8.29) 

We also point out that this effect agrees with the results obtained in 
the case of the strip geometry, (2~ where long-range correlations are only 
observed in the direction of the straight lines. Finally, the term ( % - r * )  -~ 
in Eq. (8.27), where r* is an arbitrary constant, is the outcome of the total 
charge of the conductor in the meaning of classical electrostatics. 

8.5. Dielectric Susceptibility 

We start from the definition of the tensor Z~ and use the equation 
satisfied by G~(X, Xl) [Eqs. (3.2) and (3.3)] to transform one of the 
integrals over A to an integral over the boundary. It follows that 

q2 [.% /t~n(o_) rL2(a)]  (8.30) Z~,~- @Z3fA dxlxl~fdcrh(%,a) h~o,~) 

where h is the unit vector perpendicular to the boundary at the point 
x = ( % ,  ~r). 

A straightforward calculation leads to 

q2 ~ dxt x'/~(Zrc) '/2 F Re/tic 
Zl,  = ;A L(t-h 

q2 
Z2p-- 4rC3fAdXlXlp(27r)l/2[-(thvo) l/2 

(th "CO) 1/2 Re 21] 

1 
Im/t'~" + (th %)1/2 

(8.31) 

Im 21] 

(8.32) 

In the limit q > 1, we take for #~C and 21 [Eqs. (8.19) and (8.20)] 

/t~l = -2e ' 2~ ;  21 = 2 2 1  (8.33) 

with 2~ given by Eq. (8.21). The integration over xl is performed by 
integrating first over dl from zero to infinity and then over o-xe from 0 to 
2zt. This approximation is valid for q > 1 because of the factor e qdl. More 
precisely, we have for a function f(~, ~r) which does not depend on q 

dxlf(rl,~rl)e-qd~ ~ - &rleh(ro, alp)f(%,~rle) (8.34) 
q > l q  
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We are then led to 

lim Z12 = lim 7,21 = 0 
q ~ O  q ~ O  

) lim Zlt =~-~ + 1 (8.35) 
q ~ 0  

1 
l i m  Z22 = 7 -  ('~' th ~o + 1 ) 
q ~ O  

This result agrees with the dielectric susceptibility of an ellipse in 
classical electrostatics (cf. II).  Therefore,  the D H  approx ima t ion  is able to 
recover the values given by electrostatics as for the other  geometries.  

9. GENERAL F O R M U L A T I O N  FOR THE S O L U T I O N  OF THE 
D E B Y E - H U C K E L  KERNEL NEAR THE S U R F A C E  

The potent ial  created by a point  charge in a weakly coupled p lasma 
obeys in the D H  app rox ima t ion  the differential equat ion 

--Ar2GA(rl ,  r2) = sv cS(rl -- r2) -- svFpGA(rl, r2) 

= su 6(rl  - r2) - ~C2GA(r,, r2); r 2 ~ A 

= 0; r2 r A 

We are interested in the case where a charged particle and the point  
of the measuremen t  of the potent ia l  are close to the surface. One can write 
rl = f l - s ~ n l  and r 2 =  f 2 - s 2 n 2 ,  where f is located on the surface and n is 
a unit vector  perpendicular  to the surface at the point  f (cf. Fig. 16). If the 

Or~ 

Fig. 16. 
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two points are widely separated, the potential GA(rl,r2) can only 
"propagate" through the vacuum outside the system because the screening 
property of the plasma leads to an exponential decay of the potential inside 
the system. Let us consider the potential created by a source at r~ and 
evaluated at the point r~ far away from r~. The variations of this potential 
along the surface in the vacuum are much smaller than the variations 
perpendicular to the surface in the plasma and we can neglect them locally 
in a first approximation. We can therefore assumed that, for sufficiently 
smooth surfaces (i.e., curvatures larger than a Debye length), the potential 
in the neighborhood of the point r 2 is a function of the distance to the 
boundary only 

and 

G A ( r l ,  r2) ~ GA(rl, r2, $2); los 2 ~< 1 

d 2 
-A,2GA(rl, r2) ~ - ds~ GA(rl, 22, s2) = -~2Ga( r l ,  22, s2) 

This immediately leads to the well-known exponential decay in the 
plasma 

GA(rl, r2 ) = G ~ ( r l  ' ~2)e  Ks2 

For the next step we have to use the property that the kernel is sym- 
metric, i.e., that the potential G~(rl,  r2) at the point r2 produced by the 
point charge at r~ is the same as the potential at the point r~ produced by 
the point charge at r 2. It follows that 

GA(rl, r2 ) = G a(21 ' rz)e ,~st= G ~(21,2 2)e-~ls~ +s2/ (9.1) 

The obvious advantage of this "assumption" is that we can simplify 
the problem in the sense that we now only need to compute the kernel with 
both arguments on the boundary. In the next step we define a kernel 
G~x,(r], r~) that corresponds to a potential produced by a unit charge out- 
side the system and evaluated at a point outside the system. This potential 
satisfies 

- AGext(r'~, r2) = sv 6(r', - r~) 

and, because it takes into account the presence of the plasma, matches at 
the boundary with GA(r~, r2). This means that the value of the kernel as 
well as the normal derivative with respect to one or to two arguments must 
be the same as for GA(rl, r2) if rl =r ' l  =21 and r 2 = r ~ = 2 2 :  

Gr 22)= Ga(2~, t2) (9.2) 
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d G e x t ( t  ldsl+ s 1 n, r2) ,1 =o  = - alGA(rids1- SI n, r2)  Sl =o  (9.3) 

d 2 G e x t ( f l  dSl+ S ldS2n, r2 + s 2 n )  Sl =$2= 0 = d2GA(rl - s ln ' - ?2ds l  ds2 - S 2 n )  sz=s2=O (9.4) 

To proceed with the development of the kernel outside the plasma, we 
note that in the limit of ~ --* o% the plasma can be assimilated to a perfect 
conductor with a dielectric constant e = oo. The matching conditions for 
Gext at the interface are transformed into simple Dirichlet boundary condi- 
tions and Gext(rl, r~) can be replaced by D , ' GA(r 1, r~). In order to relate the 
kernel inside the system to the (known) Dirichlet kernel outside the system, 
we use one of Eqs. (9.2)-(9.4), assuming that we can replace in the expres- 
sions Gex~ by G~ even for finite ~. We note that Eqs. (9.2) and (9.3) are 
useless because the Dirichlet kernel and even the gradient with respect to 
one argument is identically zero if both arguments are on the boundary. 
There remains the bigradient of Eq. (9.4), which takes a finite value and 
which we will use for the evaluation of GA. We must (and can) assume that 
the (perpendicular) field near a conductor is not much altered if the con- 
ductor is not perfect in the sense that the potential does not exactly vanish 
on the boundary (~=  oo) but can penetrate in a finite but small layer 
inside the conductor (~c large). 

Using Eq. (9.1), we have a relation between the bigradient of G A and 
G A itself; 

d2GA(fl --Sldsl ds2 n ' j 2  - -  s 2 n )  sl =s2 =o  = K2GA(rI' r2)  

and we can write 

1 d2G~(f~ +s in ,  f2+s2n)  
GA(rl, r2)  = 22 ds I ds2 ,1= ~2=o 

The final solution valid at any point close to the surface and at large 
separation is 

GA(rl ,r2)=(n,V~,)(n~V~2)G~(~l ,~2)  l e - ~c~+,21 (9.5) 

This equation is proved for the disk in Appendix D. The advantage 
of this formulation is that the problem of solving the long-range surface 
part of the Debye Hfickel kernel amounts to finding the kernel outside the 
system which satisfies the Dirichlet boundary conditions. Although not 
trivial in complicated geometry, it is nevertheless easier than the original 
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problem, as we show hereafter. We should point out that the asymptotic 
behavior of the surface correlation functions of the disk, the sphere, and the 
ellipse established in the previous sections are recovered in the following 
examples. 

9.1. The Disk 

The kernel of the Poisson equation satisfying the Dirichlet boundary 
conditions is most easily constructed with the method of images3 2.'2"-I If a 
is the radius of the disk, r 1 and r 2 the distances from the center of the disk, 
and ~b the angle between r 1 and r~, the kernel is written 

Gd/~sk(rl, r2, ~)  = ~ log L \  a / \ r l /  r l  

- l o g  1 +  r 2  - _ 2 r 2  - -  cos ~b (9.6) 
\ r l /  rt 

The image charge, as can easily been seen from the kernel, is put at a 
distance a2/r l. 

The first derivative with respect to r2 and evaluated on the surface 
corresponds to the induced surface charge density at the point r 2 by a unit 
charge at the point r~: 

1 d D r2 = a r 2 = a, ~b) = - 2~ dr~ Gdisk(rl' r , ,  ~b) 

_ 1 ( 1 - ( a / q )  2 ) (9.7) 
2~a 1 + (a/r1) 2-2(a/r1) cos ~b 

The derivative of D Gaisk(rl, r2, ~b) with respect to both arguments and 
evaluated on the surface is 

d 2 q~) 1 
_ _  D 

d r  1 d r  2 Gdisk(r l '  r2, = r,=~2=a 2a2 sinZ(~b/2) 

The surface Debye-Hfickel  kernel is therefore given by 

1 1 
- -  e - ~l,~ + s2, ( 9 . 8 )  

Gaisk(rl, r2, ~)  -- 2a 2 sin2(~b/2) K 2 

where s is again the distance between a point and the surface. 
It is worth noting that the integral of the charge density a(rl, r 2 = a, ~}) 

over ~b is exactly - 1  for any r 1 . A point charge is therefore always compen- 
sated by opposite surface charges on a grounded conductor. The situation 
is similar in the case of the Debye-Hiickel  approximation,  but not exactly 
the same. 



Fini te Classical Coulomb Systems 1241 

If the source is located at a distance c~R (a > 1 ) from the center of the 
disk, one can show that charge compensation occurs if (a) at fixed R, 
~c -+ oo and the scale length of the Coulomb logarithmic potential L --* oo 
or L---, 0, (b) at fixed ~: and L, R ~ oo. 

9.2. T h e  S p h e r e  

As in the case of the disk in two dimensions, the Dirichlet kernel is 
constructed by putting an image with the charge q ' =  -qa/r~ at a distance 
r '= a2/r~ from the center, 

1 D 
G d i s k ( r l '  r2 '  q)) --  (r~ q- r~ - -  2 f i r 2  c o s  ~b) 1/2 

a 

rl [r 2 + (a2/rl)2 _ 2r2(a2/rl) cos ~b] 1/2 (9.9) 

The surface charge a(r2 = a, ~b) is given by 

1 d D r r ~2=- 
f f ( r  2 = a ,  ~ )  = 4rr dr2 G~p~r.( I. r2, 

4~a  2 [1 + a 2 / r 2 - 2 ( a / r , ) c o s  ~3~/~ 
(9.10) 

The integral of the surface charge density is not equal to - 1 ,  but 
- a / r  I, which is the value of the image charge. The second derivative is 

d 2  rt 1 D r 
dr~ dr 2 G~phere( l, r2, ~b) =rz=- 4a3 sin3(~b/2) 

and the surface Debye-Hiickel kernel is 

1 t 
Gsph~re(rl, r2, ~b) = 4a 3 sin3(~b/2) ~ e ,~(s~ +s2) (9.11) 

9 . 3 .  T h e  E l l i p s e  

The Green's kernel in elliptic coordinates is given by (ref. 21, p. 1202) 

( Gl(#,0,/~o, 0 o ) = -  Po+ og 

1 oz 4 
+ 2 ~1= " ~ e-n~~ cos(n0) cos(n0o) 

+ sinh(n#) sin(n0) sin(n0o)]; # < ,Uo (9.12) 
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where the relation z = x + iy  = �89 cosh(/~ + iO) defines the mapp ing  from 
Cartes ian to elliptic coordinates.  

One  can easily see that  the kernel diverges if /~ = tZo because the 
produc t  cosh(n#)e  ~o goes to 1 as n increases. Fo r  the construct ion of the 
Dirichlet kernel we must  subtract  a function G2(#, 0,/to, 0o), which con- 
tains terms with respectively c o s ( n O ) e  - ' ~  and s i n ( n O ) e  '~ because the 
singularities at ~= /~o  are avoided and the function has an acceptable 
asympto t ic  behavior  at large #. On the bounda ry  of the elliptic domain  
(# = b), one has the match ing  condi t ion 

cosh(n#)e  -n"~ 

s inh(n#)e  - ' . ~  

= e - " ~ f l ( # o )  

= e -~f2(/~O) 
(9.13) 

which defines the ampli tudes  in GI 

f l ( l~o ) = e - "m c o s h  ( nb  ) e nb 

f2(/~o) = e - ~ o  sinh(nb) e "b 

The complete  Dirichlet  kernel is 

D 
G~xl( #, 0, #o, 0o) 

1 ~ 4 {cos(n0) cos (nOo)  [e ~.o cosh(n#) 
2 n n = l  

- e nUe-"m cosh(nb) e nb] 

+ sin(n0) sin(n0o) [e n~o sinh(n#) 

_ e-hUe n~o sinh(nb) e nb] } (9.14) 

The first derivative evaluated at # = b is 

d D 00) ~=b ao.(~, 0, ~o, 

=_1 ~ {4 cos(n0) cos(n0o) E e-n~~ sinh(nb) + e n~o cosh(nb)]  
2 n = l  

+ 4 sin(n0) s i n ( n O o ) [ e  ,.,o cosh(nb) + e n~o s inh(nb)]  
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The second derivative is 

d 2 B 

- -  ~ 8 0 )  @ @o G~.(/~, 8, ~to,  ,=~0=b 

l ~o 
{4 cos(n0) cos (nSo) ( -n)  + 4 sin(n0) sin(n00)( n)} 

n = l  

= - 2  n c o s n ( 8 - - 8 o ) - 2 s i n 2 ( ( 8 _ O o ) / 2  ) 
n = l  

To complete the demonstration, we have to take into account that the 
component of the gradient that is perpendicular to the surface, i.e., parallel 
to e~, is given by the relation 

1 dG~l 
n VG~, 

h, @ 

where h~(#, 0) = �89 2/~ + sin 2 0)  1'2. 
The surface Debye-Hiickel kernel now reads 

1 1 1 
G~H(I~, O, #o, 0o) - h~(b, O) h~(b, 0o) 2 sin2((0 - 8o)/2) K -~ e ~(,0+~.~ (9.15) 

9.4. The Cy l inder  

The kernel of the Coulomb potential in cylindrical coordinates is given 
by (ref. 22, p. 118) 

1 2 d k e  im(r 4 ' l c o s k ( z - z ' ) I , ~ ( k p < ) K m ( k p > )  (9.16) 
I x -  x ' l  ~ . . . .  

In order to generate Dirichlet boundary conditions, one has to sub- 
tract a potential G2 which is homogeneous outside the cylinder, which 
decays to zero at large distances, and which takes the same value as the 
Coulomb kernel on the surface p = R: 

,) 
G2(x;x')==-" fo ~ dk e ~m(~--4'~ cos k ( : -  z') AmKm(kp) Km(Kp' ) 

with 

A,,, = Im(kR)/K, , (kR)  
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Therefore the Dirichlet kernel is 

= - -  d k  e i m ~ r  ~'l cos k ( z _  z'  ) GD(p; (~; P'; r 7z 

Im(kR) . . . . .  )} 
x {Im(k p <) K,.(kp >) ~ ~mtKp~ Km(kp' 

The first derivative evaluated at p = R is 

G~(p; r p'; r 
d P  p = R  

2 dke im(~ ~ c o s k ( z - z ' )  z - -  

x k  {I '(kR)Km(kp') Km(kR)l~(kR) K'(kR)Km(kp')} (9.17) 

It is interesting to note that the integral of the charge density given by 

I d r = 
a(R; r p'; r  4~z dp G(p; r p'; R 

exactly compensates the external charge for any p'. Indeed, if one sub- 
stitutes the asymptotic behavior of the Bessel functions for small k in the 
term with m = 0 in the bracket of Eq. (9.17), the value in the bracket multi- 
plied with k is 1 in the limit of k ~ 0. 

The second derivative is 

d 2 
- -  . t .  t .  _ _ ~ t )  

dpdp, GD(p;O,p , r  p=p'=R 

s  2 dk e 'm(o-r cos k(z z') 
m =  - -o8  

• k 2 {I ' (kR)  K~,(kR) Km(kR)Im(kR) K'(kR) K' (kR)}  

which, by using the Wronskian W{Iv(z); K~(z)} = -1/z, can be simplified 
to 

2s = -- d],: e im(r ~') cos k(z - z') 
7E 

tn = - -  o:~ 

k K'm(kR) 
R Km(kR) 

(9.18) 
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We analyze the term with rn = 0 in the bracket by using the following 
asymptotic behaviors for small k: Ko(kR)~-log(kR) and K[~(kR).~ 
-(kR)  1. It follows that Eq. (9.18) presents a singularity oc 1/log(k). This 
means that the function G(z-  z') behaves like 1 / [ Iz -  z'l log2(R -11z-  z'l )] 
for large l z -  z'[. 19) 

9.5. The W e d g e  in Three D imens ions  

We first derive the Dirichlet kernel for a wedge with an opening angle 
0. The Poisson equation in cylindrical coordinates is given by 

0 2 1 c?G 1 0"- 0 2 
V~G(x = (p, qt, z); x ' =  (p'; ~b'; z ' ) )= ap-- 5 G + - - ; -  +--5 ~75~ G + ~ 5  G 

p ~p p- co- 

4~ 
- - - -  6 ( p  - p ' )  ~ ( r  - ~ ' )  ~ ( z  - z ' )  

One can write the solution as a linear combination of products of 
functions R~,(p, p'), Qm(qS, ~'), and Za_(z-z'), the last two functions being 
solutions of the equations 

d 2 
d~2Qm+vZQm=O 

and 

d 2 
dz 2 Z k + k 2 Z k  = 0 

Since we impose Dirichlet boundary conditions on q~ = 0 and ~b = 0, a 
natural choice for Qm is 

Qm(~b, ~b') = ~ sin ( - ~ )  sin ( ~  -~ ) 

The adequate solution for Zk is 

1 
Z k  = ~ czk(z-- z') 

We may write the Dirichlet kernel in the following way and determine 
the unknown function g,, with the help of the Poisson equation: 

822/55/5-6-25 
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1 2 ~  ( _ ~ ) ( _ ~ _ ~ )  f ~ G(x, x') = ~ 0  sin sin dk e'k~-~'~gm(p, p', k) 
m= 1 --'~ 

z~G(.~c, xr) =~--~ ~ m~=' 1 sin sin f ,~ dk e '~-~-~') 

{ [ (mg/O)2 ] d2 
x gm(P, P', k) p2 k2 + ~p2 gm(P, P', k) 

l d  

The term in {. } must vanish if p r  and it must be - ( 4 7 c / p ) 6 ( p - p ' )  for 
p = p'. The solutions of a differential equation of the type g"+ (1 /p)g ' -  
(vZ/p2--~ - k 2) g = 0 are the modified Bessel functions K~(kp) and I~(kp). The 
solution, which depends on the arguments p and p' and which has a 
discontinuity of -4rc/p' in the first derivative at p =p ' ,  is given by 
gin(P, P', k) = 4~I~(kp < ) K~(kp > ), where v = m~/O, p < = min(p, p'), and 
p> = max(p, p'). The Dirichlet kernel now reads 

, a~, f :  dkcos[k(z-z')] 6(x,X )=om=, 

x sin (-m~-) sin (m--rCO-~-) Im./o(kp <) Km~/o(kp> ) (9.19) 

The second derivative which one needs for the surface correlations is 

d2 z ' )  ~=  

8~  2 pc =Tfo d k c o s [ k ( z - z ' ) ]  

x ~ m21m~/o(kp<) Km~/o(kp>) (9.20) 
m = l  

Using the integral representation (ref. 10, p. 140) 

1 
Jl ~ Yo([4uv sinh2(t/2)-  (u - -  t ~ ) 2 ]  1 / 2 ) e  - v t  dt L(u) Kv(v) = ~ o~,/u~ 

(u > 0, v > 0, Re(v) > -1/4)  
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and introducing the symbols F for the second derivative, x for p<,  y for 
p>,  ~ for 7r/0, and z for Fz-z'F, we obtain 

40~2  f. :o  <,  

F= ~ -  vo-l" dk cos(kz) o,~'og ~./~ Jo(k[4xy sinh2(t/2) - (x - y)2] ,,2) 

x m2e-m~t dt 
1 

The series in the curly brackets can be summed up and after inter- 
change of the integration we obtain 

o~2 s ~ cosh(~t/2 ) fo~ dt dk cos(kz) 
F = ~ -  og~./~ sinh3(c~t/2) 

x Jo(k[4xy sinh2(t /2)-  ( x -  y)2] ~,,2) 

The integral over k is given by (ref. 23, p. 731 ) 

l 1 
(xy) 1/2 [4 sinh2(t/2) - b 2] 1/2, 

=oo;  

=0;  

where b is defined by 

The change of variable 

_2 /O 2 _ z  q - ( X - -  )')2 

xy 

4 sinh2 (2 )  > b2 > 0  

4 sinhe ( 2 )  = b2 

0 < 4  sinh2 (~)  < b  2 

4 sinh~-(t/2) = b2(1 + s 2) 

thus leads to s 

c~___~ - 1 |'~ cosh(c~t(s)/2) 1 1 
F -  

(xy) 1/2 0 Jo sinh3(~t(s)/2) (1 +s2) l/2 [1 + (b/2)2(1 + s2)] I/jds 

Since we are interested in the behavior of F at large distance along the 
edge, i.e., b >> 1, we may write 

cosh(~t(s)/2) 41 -~ 

sinh 3(c~t(s)/2 ) ~ (b/2 )2~ ( 1 + s 2)~ 

5 Note that the divergence of the Fourier transform of 3o is integrable, since b > 0. 
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and obtain 

Y ~ -  ( x y )  -1/2 41 _ = ds 
7Z (1 ~-$2) 1+~ 

The integral over s can be computed and gives (ref. 23, p. 245) 

f ~  ds 1F(1/2) F(1/2+~) (~ ) 
(1 +s2)1+~=2 F(1 +c~) ; Re - ~  < 1 

The final solution (in the old coordinates) is given by 

F 
(hi Vrl)(n2Vr 2) GD(fl, f 2 ) -  pp' 

4c~ ~ 1 F(1/2) F(1/2 + c~) = (pp,)~ 1 
n I z -z ' [  1+~' F(1 +~)  

(9.21) 

It is worth noting that the result of Eq. (9.21) differs from the conjec- 
ture based on the Carnie and Chan sum rule proposed in ref. 6. However, 
the analysis presented above deserves the following comments: The wedge 
is qualitatively different from all the other geometries considered so far. 
The angle at p = 0 represents a singularity of the surface where the assump- 
tions made in the derivation at the beginning of this section break down. 
First, in the region close to the edge, the (locally integrable) divergence of 
the kernel (9.21) for an angle 0 larger than n is clearly unphysical. Second, 
it is obvious that close to the edge of the wedge the potential does not 
penetrate from one side of the wedge only, but from both sides. It remains 
to determine whether the singularity at the edge produces only a minor 
correction to the long-range behavior of the correlation function or if it 
affects the overall solution in the sense of a possible nonalgebraic decay 
confined to a small region close to the edge as proposed by Jancovici et 
a/.(6) 

9.6. Il lustration for Particular Angles of the Wedge 

The Dirichlet kernel can be constructed with the image method for 
angles 0 which are fractions of n (0 = n, n/2, n/3 .... or ~ = 1, 2, 3,...). It is a 
direct check of the general solution given by Eq. (9.21) and also provides 
a simple physical explanation for the dependence of the power of the decay 
upon the angle of the wedge, a few Debye lengths away from its edge. 
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In the simplest case of a plane wall (c~ = 1) with the boundary on the 
plane x = 0, the kernel is 

Gp.w(D r; r t )  = ~ ( x ,  •,, z ,  x ' ,  y ' ,  z ' )  - -  cI)(x, y ,  z ,  - - x ' ,  y ;  z ' )  

where ~(r,  r') is the Coulomb potential in free boundary conditions 
[OS(r, r ' ) =  1 / ] r -  r ' l] .  

The derivatives with respect to x and x'  can be expanded at large 
F z - z ' l  and one obtains 

d2 z ')  ~ l z _  z,F D t t 
d x d x ,  Gp.w.(X, y , z , x ,  y ,  

x= v'=O 

which is the result given by Eq. (9.21) for ~ = 1. 
In the case of an angle of ~r/2 we have to sum over the direct interac- 

tion in the first quadrant and the three images in the other three quadrants. 
If we evaluate the derivatives on the y - z  plane we can use the previous 
plane wall result and obtain 

d2 G ~ 2(x, y, z, x', .}/, z') x=x'=O 
d x d x '  ~= 

d 2 
_ _  D ~ Z~ i ) 

d x  d x '  G p w ( X '  ) '  x ' ,  y ,  .7' x =  ~ '=o  

d 2 
D t ! 

dx dx'  Gpw(X' y' z, x ,  - y ,  .71) 
t x - x ' = O  

An expansion for large Iz-z'l leads to 

d2 z') x 12yy' 
dx dxl G~=2(x, y , z , x ' ,  y ', 

= x , = O  I z -  z'I 5 

which is the solution given by Eq. (9.21) for e = 2. 
The solutions for higher values of c~ are constructed in a similar way 

and correspond to "multipole-dipole" interactions, which are known to 
decrease with powers of z -3, z 5, z v, etc. The solution for noninteger 
values of ~ cannot be constructed with the method of images, since the 
power of the decay does not correspond to a "multipole-dipole" inter- 
action. 

A P P E N D I X  A 

The purpose of this Appendix is to show how the D H  kernel of the 
disk given by Eq. (4.12) goes over to the D H  kernel of the semi-infinite 
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plane given by Jancovici (ref. 4, p. 55) and why the surface part of GDzgo, ~ 
is of short range, as mentioned under Eq. (6.5). To this end, it is convenient 
to start from the expansion constructed on the basis of Eqs. (4.1), (4.2), 
and (4.7), namely 

GD;ln (S'SO'O'~D)= E I,,(s<)Kn(s>) 
n>~O 

K~,(Z) + e'(~/Z) Kn(Z ) ) 
- I ' (Z)+e ' ( tg /Z) I . (Z)  I.(so)I.(s)~ # . c o s n 0  (A.1) 

where we recall that Ixl =s ,  lyl =So, s< = min(so, s), s> =max(s0,  s), and 
#i = ~Di6n:0 + ( 1 -  6n;o)n, with ~D = In(L/R) according to Eq. (4.11). 

At this point we introduce a new independent variable p = n / Z  
and since Z is very large, we look for a large-n and large-Z expansion of 
I~(Z), of K;(Z), and also of / , (Z)  K,(Z)  with n/Z finite. From Eqs. 
(9.7.7)-(9.7.10) of ref. 24 we have [cf. Remark below (A.13)] 

(A.2) 

(A.3) 

and from Eq. (9.7.5) of ref. 24 we can extract the series 

1 [1 1 In(Z) K.(Z)~-~ - - ~ Q Z )  2 13/ r / '~  4 

' ' E =2-Z [1 + (n/Z)2] 1/2 I + 0  (A.4) 

With the help of Eqs. (A.2) and (A.3), we can approximate I.(s) and 
Kn(s) for s close to Z by 

In I.(s) ~ in I . (Z)  + (s - Z) E,(Z)/I.(Z) (A.5) 

in K.(s) ~ in K.(Z)  + (s - Z) K'.(Z)/Kn(Z) (A.6) 

Next we take the canonical limit ~s) --+ oo for e' < oo, and in defining 

G~:can(S, So, 0 ) = 1  ~ #ntiS(s, So, n) cos nO (A.7) 
Ln)o 
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we obtain, since s< - s> = - I s  - So[, 

H-P2) 1 /21  { (~(s ,  so, P)-~ 2(1 e x p [ - ( 1  +p~-)l/2ls-so[ ] 

(1 + p2)1/2 -- 8~---~ } 
+ (1 + p2)1/2 + exp[(l+p2)l/2(S+So-2Z)] (A.8) 

With the substitutions Z-so---~CXl, Z-s=~cx2, p=tc 1l, e'= 1, 
Z --, o% we find that G~(s, So, p) becomes exactly K-lp[l(x I, x2, l) given by 
Eq. (3.12) of ref. 4. This result means that, given some knowledge about the 
Fourier transform h(xl, x2, y) of/~(Xl, x2, l), a very good approximation 
to the surface behavior of the DH kernel of the disk can be constructed in 
term of the Poisson sum of the function h((Z-s)/K, (Z-so))C, 
Z(0-2mz)) .  For example, the bulk part of the DH kernel on the surface 
of the disk, i.e., the function Ko(2Z sin 0/2), turns out to be approximated 
by the sum of Ko(Z(O-2n~)). Another example is given by the 
0-dependent long-range surface part (2ZsinO/2) -2 of GD:in given in 
Eq. (4.17) and which turns out to be exactly the periodized version of the 
function y 2, i.e., the long-range surface correlation discussed in ref. 4. 

As a further example, let us consider the Dirichlet limit e ' ~  oo of 
Eq. (A.1). In order for the ratio ~/~ to be meaningfull for n~>0, we need 
~.D < o% which corresponds to the "grand canonical" DH kernel. We find, 
accordingly, 

{ Kn(Z)ln(so) } G~'n:gc~ So, 0, ~D) =-- 2 #n In(s<) Kn(s>) ~ I~(s) cos nO 
n>~O 

(A.9) 

and we obtain, with the approximations (A.2)-(A.4) and for s and So close 
to the edge, 

1 1 
G~'=~- Z ~ #-c~ 1 +p2)1/2 

n~>O 
x { e x p [ -  (1 + p2)1/2 I s -  Sol ] - exp[(1 + pZ)V2 (s + So - 2Z)] } 

(A.10) 

It is now possible to find the function h(Z-s,  Z-so,  ZO) such that 
8 '  = ..~O Gin;gcan(S , So, 0, ~D) becomes its periodized realization. With the help of 

Eq. (3.914) of ref. 23 and after some manipulations, we find 

f o  exp[-  (1 q_ p2)1/2 IS__S01 ] COS px 
1 

dp (1 + p2)1/2 

= K o ( [ I S - S o [  2 q- (ZO)2] 1/2) (A.11 ) 
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and thus 

G ~' .... ~ ~ {Ko( [ Is - So[ 2 + Z2(O _ 2~m)2] 1/2) 
m 

-Ko( [ (S+So-2Z)2+zZ(o -2~zm)2] I /2 ) }  (A.12) 

which is indeed a short-ranged correlation function. We remark lastly that 
the Neumann limit e'--+0 of Eq. (A.1) becomes, for ~D>0,  i.e., for both 
canonical and grand canonical DH kernels, 

a '=0 
Gin;gcan(S , So, O, ~D > O) 

{ K~, (Z) . ,  , } , , , , . . )  
= ~ #~ I.(s<)K.(s>) ~ z . t S o ) [ . ( s )  cosn0 (A.13) 

n~>O 

For s and So close to the edge of the disk and with the approximations 
(A.2) and (A.3), we find that GD;surf is given by Eq. (A.12) with a plus sign. 

Remark. A simple derivation of (A.2) and (A.3) can be obtained by 
considering the integral representations of Kn(Z) and In(Z ) for large n and 
Z with n/Z = p fixed as a "partition function" and to evaluate K'(Z)  and 
E,(Z) in a mean field type of approximation. From Eq. (9.6.23) of ref. 24 we 
have, for example, 

(Z) n f o  -zch Kn(Z) (2n7~)!!  e ' sh2~(t) dt 

/7 
K'(Z)  = ~  Kn(Z)-- (ch t )  Kn(Z) 

where (ch t )  is the expectation value of ch t over the probability distri- 
bution [(Z)n/(2n-1)!!]eZch'sh2n(t)/K,,(Z). Since the distribution is 
"thermodynamically" peaked at Z sh i = 2n ch i/sh i or 2p = sh 2 ~/ch i = 
(ch2i - 1)/ch i, i.e., ch i =  p + (1 + p2)~/2, we notice that in approximating 
(ch t )  by its mean-field value ch i we obtain 

K'(Z)  = pK,,(Z) - [p + (1 - p2)1/2] Kn(Z) = - (1  + p2)1/2 Kn(Z ) 

which is precisely Eq. (A.5). Similarly, with Eq. (9.6.18) of [ref. 24], namely 

In(Z) = (Z)n 1 e z oo~ 0 sin2n(0) dO 
( 2 n -  1)!! 
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we have 

I/,(Z) = ~ In(Z) - {cos 0)  In(Z) ~ pL(Z) + cos 0 I,,(Z) 

and since 2p=(1-cos20)/cosO, i.e., c o s O = - p + ( l + p 2 )  ~'2, we find 
I/,(Z) ~ (1 + p2)1/2 I,(Z), which is Eq. (A.2). 

A P P E N D I X  B 

The purpose of this Appendix is to show that the behavior of the trun- 
cated radial pair distribution function (TRPDF) which we observed for the 
disk in CMC simulation (cf. Section 7) can be reproduced with the DH 
approximation in the canonical limit. 

Using the notation of II and the results of Section 4.1 and Section 6, 
we have 

1 fD d2x T ; c a n ,  *can  - -  ,02;diskI,  X ,  X -1- r )  P2;disk(lr] ) =  27Z Irl rgR 2 ~lr[) 

=2nlr l  7rR2 __flq2p2) d2x ccan ix - -  ~dmk;int , x § r) 
(Ir l)  

with 

carl 
a d i s k : m ( X  , X -]- r )  : " ~ g  . . . .  ~ J d l s k ; i n ( X ,  X -}- r -Jr- - 

z 

1 Io(~ lxl) lo(~ Ix + rl) 
Io(Z) I,(Z) 

(B.1) 

(B.2) 

We are left to examine the last term of Eq. (B.3). Since it is a surface 
contribution, it is sufficient to consider the case where the two particles are 
close to the edge of the disk. For this purpose we introduce the two new 
dimensionless variables u and v (u, v ,~ 1) defined by ~c I xl = Z ( 1 -  u) and 
~c Ix + r] = Z(1 - v), which represent the distances from the surface. 

fi~isk(S) ~--~PP (2nZs){2 {arccos ( 2 ) - - ( 2 ) I 1 -  (2)~-1 

+~-~5_ (Irl) Io(Z) I,(Z) 

~/2} Ko(Zs) 

(B.3t 

Since we know (cf. Section 6) (~gcan ( ~ d i s k ; i n k X ,  X + r) to be of short range, it 
is obvious that the surface contribution of Vdisk:intX,(~gcan ( X + r) to the TRPDF 
is much smaller than the bulk one. Therefore we can neglect this surface 
term and write {using Eq. (3.6) of II for D(lrp) and setting s =  ]rl/R, 
s e  [0; 211 
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In terms of these new variables we have 

10(~ txl) Io(K Ix + rl) 1 1 
Io(Z)  I i ( Z )  Z>>I (1 - -u )  ~/2 (1 - -V)  1/2 

- -  - -  e Z (u+v)  (B.4) 

and 

2x dx y dy 2x dx y dy 
d 2 x  = 2 x  & d!OI - 

xr s in  ]0t x r [ ( 1 - c o s O ) ( l  +cosO)]  1/2 

4x dx y dy 

[ (y  - x + r) (y  + x -  r)(x + r -  y ) ( x  + r + y)]  1/2 

4z 2 (1 -- u)(1 - v) du dv 

~c 2 [ ( s + u - v ) ( s - u + v ) ( 2 - s - u - v ) ( 2  + s - u - v ) ]  m 
(8.5) 

As for the domain of integration D(lri ), it is defined in terms of these 
variables as in II, pp. 608-609. 

Therefore, with Eqs. (B.4) and (B.5) and for large separation ( s ~ 2 )  
1 t we obtain [with u = ~(u + v') and v = � 8 9  v')] 

l If. 2 ~ d2xlo(Klxt)Io(KIx+r]) 
Z ~ - 2  ~D(Irll I o ( Z )  I i ( Z )  

2 f ] - ,  e-ZU' fi" 
~ - ~  du' [ ( 2 _ u , ) 2  s211/2 dr' 

=r~Z o du' [_(2__U,)2 $2.]1/2= du' 

S2 U 2 

id~e - Z u '  

(2 - s - u') 1/2 

Finally, after the two successive changes of variables u' = (2 - s) y and 
y =  1 - x  2, we find for s ~ 2 

1 m 2 ~" Io (~ lx l ) Io (mlx+r l )  
d2x 

Z fEZ 2 JD~I,j; Io(Z) Ii(Z) 

2 ;o ~ - - ( 2 - - S )  3/2 dx (1 - -x2)e  zl2-sl(1 x2) (B.6) 
rcZ 

The last relation is suited for a numerical calculation since the 
integrand is now regular for all x ~ [0; 1]. We note that for small separa- 
tions ( s ~  1) the contribution to the T R P D F  of the term in the lhs of 
Eq. (B.6) can be neglected. Indeed, it is easy to see that this contribution 
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is much smaller than the bulk contribution. In conclusion we can 
approximate with quite good accuracy the TRPDF by 6 

])ca~isk(S) ~ --~--~ (4s)(ZKo(Zs){arccos ( 2 ) - ( 2 ) [ 1 -  ( 2 ) 2 )  1/2} 

A numerical check of Eq. (B.7) is shown in Fig. 8 of Section 7. By 
comparison with Fig. 6, we see that the DH approximation is capable of 
reproducing the results obtained by CMC simulation on an OCP even at 
F as high as 1/2! 

The case of the sphere can be treated in exactly the same way. The 
calculations are, however, much easier than in the two-dimensional case, 
since the volume element dgx is now simply given by 

2~z 2 r c Z  3 
d3x=--xdx  vdv= - - ( 1 -  u ) ( 1 - v ) d u d v  (B.8) 

r ~ " SK 3 

As for the domain D(Irl ), it is now given by 

and we find 

/)2as;here(S) -~ - -  ~ (47~Zs) e 

(B.9) 

3s S 3 "~ 

3 zl2-")[ 1 + Z ( 2 -  s)] }) (B.10) 

The result is presented in Fig. 9 of Section 7. It shows that the TRPDF 
of the sphere manifests the same qualitative behavior as that observed for 
the disk. 

A P P E N D I X  C 

Here we present some calculations which are necessary for the evalua- 
tion of the integrals in Eq. (8.12). Let P be the point of the ellipse which 

6 Although Eq. (B.6) is established assuming s ~  2, we extend its domain of validity to all s. 
This can be done since this contribution for small s is also quite negligible with respect to 
the bulk contribution. 
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is the nearest to the x point  (see Fig. 14). We take a local Cartesian coor-  
dinate system (t, s) made up of  the tangent  and the normal  to the curve. 
The equat ion of  the curve in this coordinate  system is s(t), whose small-t 
expansion is 

S(t) _~ 1 S 2 t 2 - } - l S 3 t 3 - 1 - " ' '  ( C . l )  
t ~ o  

S 2 is the curvature  radius of the point  P. We consider a new variable u 
defined by 

D 2 = d 2 + u2; sgn(u) = sgn(t) (C.2) 

It is easily shown that  

u = sgn(t) [ - 2 d s ( t )  + t 2 + sZ(t)] 1/2 ~ t(1 - ds~) 1/2 
t ~ 0  

(c.3) 

The element of are length along this curve is 

[1 + S'2(t)] 1/2 
dl' = du 

du( t )/ dt 
(C.4) 

After a s traightforward calculation, we obtain cos c~ (see Fig. 14), 

d 1 u2c(u) 
~- (c.5) COSO~--(d2-~-U2)I/2 [-1 -~-S'2(I)] 1/2 (d2-]-  b/2) 1/2 

where the function c(u) is defined by 

t s ' ( t ) - s ( t )  1 s2 
-~ (C.6) 

c(u) = u~ [ 1 + s '2(t)]  1/2 u ~ o 2 l - ds2 

The first term of cosc~ gives a contr ibut ion to the integral I 
[Eq. (8.13)1 

IC1 - 2re Ul du,~(u) du [_(d 2 +/d2) 1/2 Kl(q(d2 + u2)1/2) (C.7) 

with integration bounds  (ul < 0, u2 > 0) that it is not  necessary to specify. 
As d goes to zero, we have to be careful with the term in square brackets, 
which behaves at small u as d/q(d 2 + u 2) and then is propor t ional  to a delta 
function 6(u) in the limit d ~ 0 .  It follows that  

dt f + ~  
lira I~11= 2 ( u = O ) - ~ u ( U = O , d = O )  
d~O :x> 

d 1 
du d2 + u - - - - - -  5 - -  2 2(~) (C.8) 
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The second term of cos ~ [Eq. (C.5)] causes no problem because of 
the factor u 2 in the numerator. This gives Eq. (8.13). 

Now we show how it is possible to calculate the integrals along the 
ellipse [Eq. (8.12)1, 

! {. 
I [ f ]  = ~ ~ dl' f ( x  ) Ko(qD) 

1 {, 
J[ g] = ~77n ~ dl' g(x') cos o~ K 1 (qD ) (C.9) 6 

when the functions f and g have slow variations over distances of the order 
of q ~ and have such behaviors that the leading contributions come from 
the neighborhood of the point P where D is minimum. As for the previous 
calculation, we use the variable u [Eq. (C.2)] and put together the con- 
tributions u > 0 and u < 0, 

! 

,Er] = T 'q'd" Ko( (d' . . ' i ' ,"t  
dl (u~ 

f (u )  Jo au 

I~o'~ + ~  du Ko(q(d 2 + u 2) 1/2) d l t ( -  bl) ~ f ( - - U )  (C.lO) 

We expand the function [dl'(u)/du] f ( u )  in series of u and we extend 
the integration to infinity with an exponentially small error. Using the 
integral 

fo~dUKo(q(de_k_u2)l/2)lt2~.+ l=I, .(q,  d) 

we obtain 

2VF(v + 1) 
q,.+l d . . . .  1K_,. l(qd) (C. ! l )  

,tyJ ' I 

= 7._o ~5~.).' \d. I (u = O)I,, l/2(q,d) (C. 12) 

with 

dl' 1 7r 
G ( I d ~ _ O ) = ( I _ _ d s 2 ) I / 2 ,  ] 1,2~_27 C qd (C.13)  

In the same way, for J[g] ,  we use the integral 

2VF(v + 1) d Kl(q(d2+u2)~/2)u2V+~=Ju(q,d)-~77i~-v---1K v(qd) du (d 2 + •2)1/2 

(C.14) 
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and we get 

1 ~(dl' g )c2,, 
1 y~ (5~m.'L\du(l+):~Y/~ ( . = o ) J .  ~/~(q,d) Jig]  = ~ . > o  

+~--~u gc) (u=O)J~+l/.2(q,d) dl 

[e(u) is defined in Eq. (C.6)] with 

(c.15) 

dl' 1 ) 1 (dl 'c~ (u=O) 1 s2 
du (1 +s'2) ~/~ (u=O) (1 -ds2) 1/2' \du  / 2 (1-ds2)  3/2 

rid 
J1/2(q, d) = ~ e-qd 

7~ 

J-v2(q, d)= 2q-- e qa, (C.16) 

Finally, it remains to give the coefficients $2, s 3 . . . .  [Eq. 1C.1)] for the 
ellipse. The only one we need is s2. An easy calculation shows that the 
curvature radius s2 at the point P = (%, ae) is 

$2= [h('ro;O'p) ] 3=hp3 (C.17) 

APPENDIX  D 

The purpose of this Appendix is to prove, for the particular case of a 
disk, that in the canonical limit ~D--' GO the long-range surface part of 
Go:in is indeed given by Eq. (9.5), i.e., by the bigradient of the Dirichlet 
kernel evaluated on the edge of the disk. 

0 To this end we start from Eq. (4.10) for the coefficient CD;in and from 
Eq. (4.7) for the coefficients r n~>l Setting d =  1, we have the expansion 

~ D ; i n  �9 

G,=I 1 ( 1 )Io(so)Io(s) 
D;in = - - ~ 5  ~o+ Io(Z)/ZI,(Z) I~(Z)II(Z) 

K'(Z) + (n/Z) K.(Z) 
+ ~ #, cos nO I,(s< ) K,(s> ) -- I;,(Z) + (n/Z) I,,(Z) 

n ) O  

Next we construct the solution of the equation 

I.(so) I .(s)]  

(D.1) 

~ ' = 1  i -- AG D;out(x , y'] = 27r6(x' -- y') (D.2) 

with both x' and .v' outside the disk and we require that G g'=D:in~ and GD;ou t 
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match together with their normal derivative on ]xj = ]x'[ = ]y] = I)"J = Z .  
To this end, we write the expansion 

GD:ou t = Fo(s> ) + 2 n ks'> ) cos n0 
n~>l 

- Bofo(S'o) Fo(s')- ~ B~ cos nO (D.3) 
.>~1 \s;s'J 

where Fo(s') is given by Eq. (4.6). 
The matching conditions result in 

1 
B o = 

~ + Io(Z)lZI,(Z) 

l ; (Z) -  (n/Z) I~(Z) 
8~ - I ' ( Z )  + (n /Z)  I . ( Z ) '  n > o 

Notice here that the same coefficients would have been found if we 
had required to match ~,=1 , GD;out(X, y') with the solution of the homogeneous 
D H  equation ~,=1 GD:in (x, y ' )  with x inside the disk and the source y '  outside. 
We have, therefore, 

G~'= 1 ,  , ' O) = Fo(s'> ) - Bo Fo(s'o) Fo(s') D : o u t [ S 0 ,  S , 

,:IZI-tn/Z)UZI( : q 
+ ~ n L \ ~ )  -s;(z)+(nlZ) L(Z) ks;s --z) J cos,O 

n>~l 

(D.4) 

The problem is now to establish a relation between G ~:'= ~ and G ~'= D:in D;out 

in the sense of Eq. (9.5). We notice first that, from the interior of the disk, 
up to a typical distance of a Debye length, the plasma "sees" a vacuum in 
the exterior of the disk with a vanishing ratio of dielectric constants and 
second that, from the exterior of the disk, again up to a distance of the 
order of a Debye length, the vacuum "sees" the interior of the disk as a 
perfect conductor with an infinite ratio of dielectric constants. These 
observations suggest that we extract from GD;in a Neumann part  and from 

e ' = l  e ' = l  GD:o~ ~ a Dirichlet part. For  GD;,~, we have with Eq. (A.13) 

G D: m (So, S; O) 

( G~2~ 
s, O)--L_ ~D-4- [o(Z)/Z'l((Z) II(Z) I i (Z )  

~K'(Z) I t (Z) + (n/Z) K~ 
+ ~ U"LF(Z) I ' (Z )+(n /Z) ' - -7~ 'J  I~ (s~176  

n~>0 
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,'=o 8 ) -  1 ~D+Io(Z)/ZII(Z I1(Z)I1(Z) = GD:in (S0, S, 

( n ) (  , 1 )in(so)in(s)cosn 0 
- ~, 2 ~5  I ' (Z ) [ I~ (Z)  + (n/Z) Ix(Z) ] 

n>~l 

At this point we introduce the large-n and large-Z approximations 
given by Eqs. (A.2) (A.6) and we find, multiplying the numerator  and 
denominator  by (1 + p2)l/2_p in order to simplify the latter, 

l 
~ , = 1  ~ , : o  8)_z~ GD;In (So, S, 0)) = GD:in (S o, S, exp(s + s  o -- 2Z) 

-- Z 2 7 /  Z[1 -1- (El~Z)2] 1/j n~>l 

xexp 1+  (S+So-2Z)  cosn0 (D.5) 

The long-range 8-dependent surface part of Eq. (D.5) is consequently 
given by 

~'= 1 2n 
GD:in~s,rf(So, S, 8) ~-- -- ~ ~5 exp(s + So -- 2Z) cos n8 (D.6) 

n~>l 

Proceeding similarly with GD;o~ t, we extract a Dirichlet part [ref. 22, 
Eq. (10.1.19)], namely 

GD;ou t (So, s, 8, CD = 0) 

= GDirichlet(S(), S', 8 )  

= - l n ( s Z - ) +  ~ l l ~ ( s ' < ~ n  ( Z ~ c o s  n [_\~;-f>J - \S'oS'] J n8 (D.7) 

we introduce the auxiliary function 

C ~  Fo(s'>)-BoFo(s'o)Fo(s') 

= 1 [ Io(Z) 
~D + Io(Z)/ZI~(Z) [_ZI~(Z) 

(D.8) 
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which vanishes in the canonical limit and we obtain 

Ga' = 1 a' = ~o 

( z- (z) -  ( . /z) ,o(z))(z~)~ 
1 1 ~ + ( n / Z )  I , (Z )J \ sosJ  c o s n S + C  O +~n n>~l 

,=~ 2 ' . (Z)  (Z2"] ~ 
cos n8 + C O 

= GD;~ + ~ Z I ' (Z)  + (n/Z) I~(Z) "'\SOS/ n>~l 

2 { -p (~ ~_+pS+/;JU\,o~/)(s176 co - -  O;;ut + n}, z + cos .8 + 

g '=l  Again, the long-range 8-dependent surface part of Go;ou t is given by 

~'=~ _ - 2 n  ( Z 2 )  n 
- -  cosn8 (D.9) aD:out;surf--  2 - - ~ \ S o S  j 

n>~l 

which matches exactly with Eq. (D.6) on the edge 
remarkable fact is now that we can construct the 
surface part of Eq. (D.61 as 

- 2n 
Z -27- cos ~0 

n~>l 

-ds'ods' - I n ( - - ; - ) +  Z 1-V(s'~<~-(Z--'~-2"]"~ kS<,/ ,>~lnk\s '>] \S'oS'] j c o s n 8  

d 2 
- -  ' ' ( D . I O )  

=- ds'o ds' GDirichlet(So' S ,  8)  s~ = s '=  Z 

We have lastly, for So and s close to Z and ~D ~ 0% 

of the disk. The 
angular-dependent 

Go;in (So, s, 0, r --, o0) 
,~'=0 ~" -~ Go;in (So, s, 8, r = 0) 

d2 s6 -}- ~ GDinchlet(S~), S', 8)  e x p ( s  + s o - 2 Z )  
~ s ' ~ Z  

This result shows in particular that the first term of the 
Eq. (D.11) is of short range. 

(D.11) 

rhs of 

822/55/5-6-26 
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